
7’~~s review surveys results that have been published in 
the open literature covering various fields of heat 
trartsfer during 1981. As in the past, the number of 
papers published dur~n~that pe~od was such that only 
a s&e&on can be included. 

An Ad~~an~ed Study Institute on “Low ReynoI~s 
Forced ~onv~e~~on in Channels and 33undles”was held 
at Ankara, Turkey, 13-24 July 198 3. Nirz sessions dealt 
with forced convection and heat exchanges technology. 
Probings of the institute wifl be ~ubI~shed by 
Hemisphere Publishing Corporation, Washington, 
DC. 

The 20th Notional Heat Transfer Conference w&s 
held at Milwaukee, Wisconsin, 25-5 August 1981, and 
was sponsored by the American Society of Mechanical 
Engineers and the A~~~r~&an Institute of Chemical 
Engineers. ~~ir~~*e~~~t sessions were devoted to 
various fields of fundamentd and applied heat transfer, 
including sessions on porous me&a and rnath~rn~t~~~~ 
modeling. Invited lectures were presented by G. F. 
Hewitt on “Two-Phase Flow and its Applications: 
Past, Present, and Future” and by R. A. Seban on 
“Some Aspects of the Heat Transfer in Reflooding of a 
Single Tube”. The Donald Q Kern Award was 
presented to G. F. Hewitt and the Max Jakob 
Memorial Award to R. A. Seban. The papers presented 
at the conference are available as preprints or in the 
~ob~~sh~d series of the American Institute of Chemical 
Engineers. Many will also be published in th~~o~~~~l oJ’ 
Heat Tran$T. 

The Third Symposium on Turhttlent Shear Flows 
sponsored by the U.S. Air Force Ohice of Scientific 
Research, Researeh Offices of the U.S. Army and Navy, 
and the National Science Foundation took place on Y- 
11 September 1981 at the University d California, 
Davis. One ofthe sessions was devoted to heat and mass 
transfer in boundary layers and various papers in the 
other sessions touched on heat transfer. A bound 
symposium volume is available. 

The fnternational Centre for Heat and Mass 
Transfer organized I Summer SchooI on “Heat 
Exchangers” (31 August-j September 1981) and an 
International Seminar on “Advancement in Heat 
Exchangers” at Dubrovnik, Yugosiavia, 7-12 
September 1981. The Summer School was organized 
around the Heat Exchange Design Book which is 
~ub~~sh~d by ~ern~s~~ere ~ub~~sh~ng Corporation in 
lisepa~rts. FroceedingsoftheInternationai S~mjna~are 
also available through Hemisphere Publishing 
Corporation. 

The Second Nation& Symposmm on ~‘~urner~~~~ 

Methods in Heat TransFer” was sponsored by the 
National Science Foundat~o~~~ the Oftice of Naval 
Research, and the University of~aryland and was held 
at College Park, Maryland, 28--30 September 1981. 
Twelve sessions dealt with finite different and finite 
element methods used in modeIin~ heat transfer 
processes. A short course for engineers and scientists on 
‘~~orn~utat~o~ of Heat Transfer and Fluid Flow’* was 
held at the University of~~~n~~sot~ 16-19 ~ov~rn~~ 
1981. 

The 102nd Winter Annual ~~eet~n~ of the American 
Society of ~~e~bani~al Engineers, hefd 15-20 
PSovember 19&I at Was~ljngton, D.C., ~ont~jne~ in its 
program sixteen sessions on f~~darnenta~ and npphed 
aspects of heat transfer. At the Heat Transfer 
Luncheon, Frank Kreith gave a lecture on the topic “Is 
There a Solar Future?“. Heat Transfer Memorial 
Awards weregiven cu A. Cezairliyan, Mwang-Tzu Yang 
and fvan Carton. The papers presented at the 
conference are available as preprints or in book form at 
ASME ~~a~~uarters. Many of them wiil niso be 
published in the Journal ofHeut Trurtsfer. 

A considerable number of books dealing with heat 
transfer or including heat transfer topics have appeared 
on the market. They are listed in the bibI~o~raphic 
portion of this review. The f&if? Amwicnn ~o~~n~~ qf 
Hear anil &lass Trun#2r is pu~~isbed in Argentinx with 
the Editorial Office at Avenida 1, No, 867, La Plats, 
Argentina. 

The following hj~~l~ghts ~1Iurninat~ developments in 
beat transfer research during 1981: 

In heat conduction, problems of phase change 
appear to be the main focus ~f~~~~is~~ work. Solution 
methodolo~~~s~ both nurner~~~l and analytical, alsrt 
continue to evoke interest. 

Complex passages, as they occur in compact heat 
exchangers have been pr~marii~ inv~tigat~ as 
channei flow configurations. Laminar and turbulent 
boundary layers are of~ontinuin~~nt~rest. Freejets and 
flow across cyfinders have also found attention, 

Heat transfer in porous media and in fluid&d beds 
found much attention, probably since these processes 
are not completely understood as yet They art: 
investigated experimentally and analytically with 
models s~rn~l~f~ing the process. Studies on one-phase 
heat transfer, as well as change sf phase, and combined 
beat and mass transfer are reported in the literature. 

Porous media were also considered in natural 
~o~v~tion studies. Double difmsion processes were 
under inv~ti~a~o~. External natural convection 
studies concentrated on Bat piates in steady and 
transient state. Some of the articles included the e&cts 
of variable properties. Mixed convection over plates, 
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cylinders, and spheres was the topic of several papers. 
Processes in rotating flows have been studied which 

led to a significant increase in heat transfer or to a 
favorable ratio of heat transfer to pressure drop. 

Heat transfer with change ofphase remains an active 
research topic. As in past years, the majority of the 
papers in this category are nuclear reactor heat transfer 
oriented. Present papers in the reactor heat transfer 
subcategory discuss: bubble nucleation in a super- 
heated liquid medium upon depressurization ; boiling 
outside of sodium-heated tubes; heat transfer, CHF, 

and bubble growth when liquid coolant comes in 
contact with molten nuclear fuel ; heat transfer in falling 
liquid films with rewetting and quenching; and boiling 
in a porous medium. Topics of papers on basic 
phenomena of boiling and condensing include: the 
details of bubble formation, growth and departure and 
the microconvection associated with these processes; 

the effects of surface coatings, e.g. gold or plasma- 
coated polymers; and the effects of surface prepar- 
ations, e.g. nucleation pits. Several papers were 
presented on droplet evaporation in superheated vapor 
or in a noncondensible gas. 

Interest is still strong in studying the performance of 
heat exchangers, whereas heat pipes have found little 
attention the past year. 

The largest number of papers on solar energy 
continue to deal with the experimental and analytical 
evaluation of the performance of flat plate solar 
collectors. A significant number of publications 
describe the thermal performance of passive solar heat 
systems. 

There is renewed interest in plasma heat transfer 
associated with new developments in high temperature 
plasma chemistry and plasma processing. 

To facilitate the use of this review, a listing of the 
subject headings is made below in the order in which 
they appear in the text. The letter which appears 
adjacent to each subject heading is also attached to the 
references that are cited in that category : 

Conduction, A 
Channel flow, B 
Boundary layer and external flows, C 
Flow with separated regions, D 
Natural convection-internal flows, F 
Natural convection-external flows, FF 
Convection from rotating surfaces, G 
Combined heat and mass transfer, H 
Change of phase, J 
Radiation 

Radiation in participating media, K 
Surface radiation, L 

MHD, M 
Numerical methods, N 
Heat transfer applications 

Heat exchangers and heat pipes, Q 
General, S 
Solar energy, T 

Plasma heat transfer, U. 

CONDUCTION 

Problems of phase change appear to be the main 

focus of the published work in heat conduction. 
Solution methodologies, both numerical and 
analytical, also continue to evoke interest. 

In a method for immobilizing moving boundaries in 
phase-change problems, a convection-like transport 
appears in the governing equations due to the 
coordinate transformation [22A]. By immobilizing the 
moving boundary, the 2-dim. freezing on the outside of 
a coolant-carrying tube was solved by a finite- 
difference method [57A]. A closed-form solution has 
been obtained for the 2-dim. freezing on a wall that is 
convectively cooled from the rear [21A]. A simple 
l-dim. model, which neglects the details of axial 
variations, was employed to solve for melting about a 
horizontal tube through which a hot fluid passes [48A]. 
When a heat-generating liquid layer, insulated at the 
bottom, is cooled from above by contact with a cold 
environment maintained at a fixed subfreezing 
temperature, a frozen crust may be formed at the top. If 
the top cooling is not strong enough, the crust may 

grow and decay periodically [8A]. For melting about a 
horizontal cylinder, short-time solutions (i.e. small 
natural convection) were obtained by both an integral 
method and a quasi-steady model [69A]. 

In an analysis of unidirectional freezing of aqueous 
solutions during cooling at subzero temperatures, 
under conditions where the solute is completely 
rejected by the advancing ice front, the conventional 
diffusion equation is invalid [32A]. The enthalpy 

method has been reinterpreted to increase its accuracy 
[63A]. In a companion paper, a modification of the 
enthalpy method has been extended to cylindrical 
problems containing a circular cross section and 
spatially uniform boundary conditions [64A]. A 
similarity rule which greatly simplifies the solution of 
solidification problems has been extended to take 
account of the volume change that accompanies the 
phase change [5lA]. A conformal transformation 
method was applied for the determination of the shape 
of the interface between a solidified layer formed on the 
inside ofa cooled pipe of rectangular cross section and a 
warmer flowing liquid which passes along the axis ofthe 
pipe [60A]. The freezing of a liquid passing through a 
pipe with highly cooled walls may result in blockage of 
the pipe [47A]. Numerical solutions for 2-dim. 
solidification in a rectangular region have reaffirmed 
the importance ofaccounting for natural convection in 
the melt [45A]. 

A series solution of the Stefan problem with a 
convectively heated surface has been formulated and is 
purported to be exact [34A]. Series solutions have also 
been constructed for the Stefan problem with 
prescribed surface heat llux. A similarity solution is 
possible if the heat flux varies as t- li2 [61A]. The 
accuracy of approximate solutions for the uniform heat 
flux boundary condition has been assessed [9A]. In the 
Stefan problem, the magnitude of the Stefan number 



Heat transfer-a review of the 1981 literature 1785 

serves as a measure ofthe ratio ofthe sensible heat to the 
latent heat [53A]. The analysis for the freeze-coating of 
a continuous moving sheet differs from the standard 

Stefan problem in that the frozen layer thickness varies 
with the space coordinate along the moving sheet 
rather than with time [SOA]. 

For calculating transient heat conduction in an 
expanding solid, the governing energy equation can be 
transformed to that for a fixed boundary problem 
[24A]. Highly nonlinear steady and quasi-steady 
conduction problems in simple geometries, including 

the effect of material travel, can be solved effectively by 
an iterative adaptation of the SEPELI fast elliptic 
equation solver [43A]. A finite element algorithm was 
used for the prediction of the rate of freezing of fresh 
water for various boundary conditions [23A]. A Heat- 
Balance-Integral solution for freezing about a circular 

cylinder was applied to soil systems [35A]. 
In an applications-oriented study, a model was 

developed for predicting the characteristics of an array 
of phase-change cylinders arranged in crossflow with 
respect to a transfer fluid [54A]. A design-oriented 
computation procedure for phase-change storage 
yielded the melted fraction and the shape of the liquid- 
solid interface [19A]. 

A number of experimental papers have dealt with 
freezing and melting. For freezing on a finned vertical 
tube, the heat transfer enhancement is proportional to 
the fin area when there is strong natural convection in 
the liquid melt [%A]. Experiments demonstrated that 
fins provided greater enhancement for melting than for 
freezing [4A]. When a cooled surface is placed in a 
superheated liquid, the freezing is initially strongly 
affected by natural convection, but as the superheat 
wanes, conduction in the frozen solid becomes the 
dominant heat transfer mechanism [59A]. Local and 
average heat transfer rates at the ice--water interface of 
an ice layer grown on a circular cylinder were 
determined directly from a photograph showing the 
shape of the ice layer [7A]. In the melting of the vertical 
surface of a solid by a heated liquid pool, the melt and 
the external fluid did not intermix along their mutual 
vertical interface despite the fact that the two media 
were miscible [15A]. In experiments on melting about a 
heated vertical cylinder, the measured heat transfer 
coefficients were little affected by whether the upper 
surface of the melt was subjected to a slip or no-slip 
velocity boundary condition [27A]. 

Solutions for a variety of steady state conduction 
problems have been published. In response to problems 
encountered in the cold-rolling of flat metal products, 
steady state temperaturedistributions weredetermined 
for a rotating roll subject to constant heat input over 
one portion of the circumference and convective 
cooling over another portion of the circumference 
[42A]. In another steady state problem involving 
complex boundary conditions, a solution was obtained 
for the temperature distribution in the wall of a tube 
which is in contact with the wall of a larger tube over 
part of its circumference [1 A]. Numerical values of the 

conduction shape factor have been determined for 

multi-hole prismatic bars [39A]. A simple rule is 
presented for conduction shape factors for bodies with 
a geometrical axis of symmetry and with boundaries 
that are maintained at one oftwo uniform temperatures 
or are insulated [33A]. Conduction from surfaces to the 
3-dim. surrounding space is relevant as a limiting case 
for natural and forced convection, respectively, as the 
Rayleigh and Reynolds numbers approach zero [ lOA]. 
To analyze heat conduction in spheres packed in an 
infinite regular cubical array, a unit cube with a sphere 
at the center was selected as the typical module [13AJ. 
An analytical model for the computation of steady 
conduction across rectangular-celled enclosures is 
based on the assumption of quasi-i-dim. conduction in 
the cell partitions [14A]. Classical series methods are 
employed to solve steady conduction problems in r, z 

cylindrical coordinates for boundary conditions 
approp~ate to nuclear reactor fuel pins [67A]. A wire 
heated by ohmic dissipation can, under certain 
conditions, have multiple steady states. The sufficient 
conditions for a unique steady state have been 
identified [40A]. 

Fins continue to evoke interest. Numerical solutions 

of the momentum equation for the fluid and the energy 
equations for the fluid and the solid yielded local heat 
transfer coefficients along the principal faces and the 
tips of an array of rectangular fins. The averaged tip 
coefficients were not markedly different from those of a 
segment of the principal face adjacent to the tip [56A]. 

In the presence of condensation on a rectangular fin, the 
optimum fin length is smaller than for the case of no 
condensation [29A]. The optimum efficiency for a 
cylindrical pin fin is higher than that for the 
longitudinal rectangular fin [SSA]. The effect of a 
timewise periodic variation of the base temperature ofa 
radiating fin is to increase the mean heat transfer rate 
[2A]. In a companion paper, the analysis is extended to 
temperature-dependent thermal conductivity and to 
spatially varying heat transfer coefficient [3A]. The 
standard assumption of a uniform fin heat transfer 
coefficient was lifted in favor of a linearly varying 
coefficient from base to tip [ISA]. A technique for 
analyzing an array of extended surfaces is based on 
principles of graph theory, employing a novel kind of 
incidence matrix [52A]. 

Some interest persists in anisotropic materials, 

composites, and variable properties. By the use of a 
numerical mapping technique, steady state heat 
conduction solutions for anisotropic composites of 
arbitrary shape have been obtained [44A]. The finite 
integral transform technique has been generalized to 
solve transient heat conduction in a 3-dim. anisotropic 
medium [37A]. In determining the thermal con- 
ductivities of fibrous composites, an analytical model is 
employed whereby the fibers are considered to be 
uniformly dispersed in a matrix of resin Cl 7A]. To deal 
with temperature-dependent thermal conductivity in 
l-dim. transient conduction problems, it is proposed to 
replace the nonlinear heat equation with a linear 
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version which contains a pseudo heat generation term 
[ZSA]. 

Aspects of contact have been investigated. The 
problem of the transient response of two semi-infinite 
solids not making perfect contact is treated by modeling 
the interface as a series of equally spaced strips making 
perfect contact, with the remaining area assumed to be 
perfectly insulating [46A]. If an elastic half plane is 
indented by a perfectly conducting rigid flat punch 
which is at a different temperature from the half plane, 
the nature of the contact depends on the magnitude and 
direction ofthe heat flow [ 11 A]. The basic nature of the 
planar Hertz contact problem differs depending on 
whether heat Rows into the material with the larger 
distortivity or vice versa [12A]. The finite integral 
transform technique was used to obtain a quasi-steady 
solution for two finite periodically contacting regions, 
with imperfect thermal contact at the interface [62A]. 

Various specific problems of transient conduction 
were solved. The solution for the transient temperature 
field in a sphere with single-sided heating modeled a 
problem in magnetic thermonuclear reactor engineer- 
ing [66A]. Transient heat flow from a disk into a half- 
space when the disk temperature undergoes a step 
change was investigated by a separation of variables 
technique using oblate spheroidal coordinates [36A]. 
A series solution is presented for the transient 
temperature response of a semi-infinite cylinder to a 
step change in heat flux at a disk centered in the end face 
of the cylinder [SA]. In a related paper, large time 
solutions are obtained for a semi-infinite body heated 
over a circular region on its exposed face [6A]. In a 
transient technique for measuring thermal conduc- 
tivity, the ramp function offers advantages over the step 
and Dirac functions [38A]. A correction for heat 
conduction between a sensor wire and its supports 

should be made to attain high accuracy [30A]. 
In addition to the solution methodologies described 

in the foregoing papers, several other methodology- 
related papers have been published. The advantages of 
using body-fitted coordinates as the basis for the 
numerical solution of heat conduction problems was 
illustrated by a range ofexamples [16A]. The unsteady 
surface element method is an approach for determining 
the temperature and heat flow at the interface between 
contacting, conducting solids [26A]. A finite element 
procedure for unsteady conduction has been developed 
which utilizes conjugate base functions and a modified 
form of the secant method for solving the discretized 
equations [49A]. The main advantage of the boundary 
element method for solving transient heat conduction 
problems is the reduction by one of the dimensionality 
of the problem [68A]. A numerical method for steady 
heat conduction, the iterative boundary integral 
method, is purported to have no limitations with regard 
to geometric complexity, type of boundary condition, 
or thermal conductivity [ZSA]. Using a conformal 
transformation which maps the region of interest onto 
the upper half plane, the Heat Balance Integral is 
generalized to 2-dim. transient heat conduction [70A]. 

For situations with moving temperature fields (e.g. 
metal forming, welding, plastic processing), moving 
finite elements were found to be advantageous as the 
basis of a numerical solution [41A]. An electrical 
analoguefor solvingconductionproblems with moving 
heat sources on the surface yielded good agreement 
with solutions in Carslow and Jaeger [31A]. 

The inverse problem of transient heat conduction 
was shown to be ill-posed, as the solution exhibits 
unstable dependence on the given data functions 
[65A]. As a variant of the inverse problem, a method is 
described for predicting the geometry of a cavity 
situated beneath a surface whose temperature is known 
(for example, by infrared scanning) [20A]. 

CHANNEL FLOW 

Experimental and theoretical work has been 
reported for the fluid flow and heat transfer processes in 
channels of both simple and complex geometry. 

Among thestudies associated with circular pipes, the 
heat transfer to liquid metals in laminar and turbulent 
flow has been dealt with [6B]. The situation with drag- 
reducing non-Newtonian fluids has been considered 
[41B]. Ref. [20B] deals with heat transfer to 
pseudoplastic fluids, while [7B] describes mass transfer 
to viscoelastic fluids. The dispersion from a line source 
in a turbulent flow is handled in [ I3B]. An analysis has 
been done for the unsteady heat transfer to power-law 
fluids [25B]. The effect of cross flow at the entrance on 
the heat transfer in tubes has been investigated [31B]. 
Ref. [ 1 SB] deals with ice formation in a pipe containing 
flows in transition and turbulent regimes. Mechanical 
heating of non-Newtonian fluids has been discussed 
[12B]. The gun barrel wall heat transfer has been 

analyzed [ 1 B]. 
Ref. [35B] deals with the heat transfer in a capillary 

flow. Fluidized bed heat transfer toasingle vertical tube 

has been discussed [SB]. Entry lengths for heat and 
mass transfer to power-law fluids have been determined 
[47B]. Ref. [46B] presents a simple solution for heat 
transfer to a power-law fluid flowing in a pipe. 
Convection velocities have been determined for a 
turbulent pipe flow [30B]. Simultaneous diffusion and 
convection in laminar tube flow has been studied 
[SlB]. Ref. [32B] deals with heat transfer in profiled 

tubes. 
Axial conduction in the fluid and the solid walls of the 

channel plays an important role in some cases. Axial 
conduction is included in the analysis oflaminar flow in 
a circular tube [4B, 33B]. The conjugate convective 
heat transfer is considered for viscoplastic fluids [40B]. 
The flow in a circular tube is analyzed with the effect of 
axial conduction [48B, 49B]. 

A numerical solution has been obtained for the heat 
transfer between concentric vibrating cylinders [17B]. 
The flow and heat transfer in rectangular cavities has 
been solved by a numerical scheme [24B]. Ref. [9B] 
deals with 3-dim. laminar flow in ducts. The entrance 
region of a flat plate duct has been analyzed [37B]. An 
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analysis is presented for flow and heat transfer in rod 

bundles [SOB]. Heat transfer in a converging channel is 
considered [lOB]. Ref. [21B] deals with multicom- 
ponent mass transfer in turbulent flow, Nucleation and 
bubble growth has been discussed for immiscible liquid 
composites [18B]. Laminar how heat transfer in 
triangular passages has been investigated [38B]. 

Critical heat flux in horizontal channels has been 
experimentally measured [23B]. The response of a 
turbulent boundary layer to a sudden decrease in wall 
heat flux has been studied [45B]. Experimental data are 
reported for heat transfer at an upstream facing surface 
of an aperture [43B]. A numerical solution has been 
obtainedforinterrupted-platepassages withfiniteplate 
thickness [36B]. Experimentally determined heat 
transfer coefficients are given for a tube downstream of 
a cylindrical plenum [22B]. Friction factors in 
internally finned channels are analytically predicted 
[39B]. Ref. [2B] considers heat transfer in a channel at 
supercritical pressure. 

An analysis has been reported for how in twisted 
pipes [27B] ; a related paper deals with heat transfer in 
the same situation [28B]. Turbulence models have 
been examined for ducts of annular cross section [26B]. 
Measurements are reported for the pressure drop in 
shrouded fin array with tip clearance [42B]. A study of 
how and heat transfer in corrugated wall channels has 
been presented [19B]. Heat transfer is studied for a 
parallel-platechannel containing a cylinder [34B]. Ref. 
[3B] deals with heat transfer to pseudo-plastic fluids. 
The use of mass transfer method for heat transfer is 
discussed in [29B]. Experimental data for turbulized 
channels are correlated by the use of a turbulence model 
[ 14B]. The Rayleigh-Ritz method has been applied to 
forced convection [llB]. Laminar heat transfer in a 
duct has been considered with temperature-dependent 
properties [16B]. Ref. [SB] deals with the effect of 
mounting systems on heat transfer from inclined 
cylinders. The flow and heat transfer around a blockage 
in a duct have been considered [44B]. 

BOUNDARY LAYER AND EXTERNAL FLOWS 

Most papers in the area of boundary layers are 
concerned with laminar and turbulent boundary layers 
on flat surfaces. Work has also been reported on 
turbulent jets, impingement flows, and flows over 
cylinders and spheres. 

An integral method has been applied to the 
calculation of heat transfer in a turbulent incom- 
pressible boundary layer [32C]. The effect of a 
favorable pressure gradient on the heat transfer to a 
rough surface has been considered [SC]. A study is 
reported for effect of the Reynolds number on the 
turbulence structure of a slightly heated turbulent 
boundary layer [29C]. The combined free and forced 
convection on a vertical surface has been investigated 
[SC]. Boundary layers on turbine blades at different 
angles of attack have been studied [38C]. Ref. [23C] 
describes the shear stress and heat transfer charac- 

teristics at an infinite swept attachment line. The 
unsteady turbulent heat transfer from a flat plate has 
been investigated experimentally [ l2C] and numeri- 
cally [13C]. The influence of adiabatic co-planar 
extension surfaces on the solar-collector heat transfer 
coefficients has been described [2X]. An experimental 
investigation of heat-stabilized laminar boundary 
layers in water has been reported [SC]. The influence of 
a density interface on a boundary layer has been 
discussed [21C]. A study has been reported on the 
forced convection near laminar separation [2C]. 
Laminar heat transfer has been investigated for the 
situation in which heat is transferred from a flat surface 

to a a-dim. water jet [1X]. 
Among the studies related to free jets, the turbulent 

convective velocities in a plane jet have been measured 
[1 lC]. The structure of a slightly heated turbulent 
mixing layer has been studied [24C]. An experimental 
and theoretical investigation has been reported for a 
2-dim. turbulent jet [14C]. An analysis of a laminar 
isothermal two-phasejet appears in [SC]. The interface 
heat transfer in a horizontal co-current stratified how 
has been described [3OC]. The complex flow and heat 
transfer phenomena arising from the impingement of a 
jet array with cross flow have been discussed [lOC]. 

The flow and heat transfer at the axisymmetric 
stagnation region has been calculated [22C]. 
Experimentally determined heat transfer coefficients 
on a wall-attached cylinder are reported [28C]. 
Reference [lC] deals with the heat transfer in a tube 
bank. Laminar falling film characteristics have been 
determined for horizontal tubes [26C]. Heat transfer 
due to flow over rectangular bodies has been 
considered [31C]. Flow and heat transfer around a 
sphere has been discussed in a number of papers [ 18C, 

35c, 34c, 7c-j. 
Among studies concerned with ti-me-dependent 

situations, a thermal boundary layer is considered 
[16C]. The temperature fluctuations in liquid-metal 
systems are analyzed [2OC]. In a non-Newtonian flow, 
the unsteady thermal boundary layer is analyzed 
[25C]. Approximate convective heating equations 
have been proposed for hypersonic flows [37C]. 

Among the measurement and analysis of turbulence 

properties, the following topics have been investigated : 
decay of turbulence behind a grid [36C], turbulent 
scalar fields [17C], turbulent bursts leading to a 
prediction for turbulent Prandtl number [33C], origin 
of turbulence [4C], and transitional turbulent spot 
[3C]. The intrinsic scales in thermohydrogasdynamics 
have been identified [ 19C]. 

FLOW WITH SEPARATED REGIONS 

AND THROUGH POROUS MEDIA 

separated regions 
Heat transfer was investigated from cylinders in 

unsteady flow [2D] and in high temperature 
surroundings [l SD]. Experiments studied also heat 
transfer between a heated cylinder and an air stream 
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with a water spray for steady and pulsating flow [3D]. 
An expression was derived [lOD] for stagnation point 
heat transfer from a row of impinging jets to a concave 
cylinder surface. Similarity was verified for models 
scaled up by a factor of 10. A numerical 2-dim. analysis 
[6D] studied the flow and heat transfer in a rectangular 
cavity where the flow is starting from rest with some 
fluid entering at the upper left hand corner and leaving 

the cavity in the lower right hand corner. 

Porous media 
A numerical analysis [ 17D] studies the velocity and 

temperature field in a porous medium near an 
impermeable boundary. Flow and heat transfer are 
determined by three dimensionless parameters and the 
results reveal that errors occur when calculations are 
based on Darcy’slaw. Convection in a porous layer was 
also analyzed [SD] by integral relations at high 
Rayleigh number and for a fluid with temperature 
dependent viscosity. Mass transfer caused by natural 
convection in a porous medium consisting of packed 
spheres and screens was measured [7D] by the 
electrochemical method. The results were described by 
the following equation 

Sh = O.O228(Sc Gr)0.32(R,/d,)0.22 

with d denoting the particle diameter and R, the 
hydraulic radius of the flow cross section. Natural 
convection heat transfer was studied [4D] for a vertical 
impermeable partition between two porous media 
maintained at different temperatures. The results show 
that such a separation inserted in the middle of a porous 
slab reduces heat transfer drastically. Experiments on 
boiling heat transfer in porous wire mesh structures 
[14D] resulted in dimensionless expressions for the 
heat transfer coefficient. 

Three papers deal with combined heat and moisture 
transfer in unsaturated porous media. The transfer 
processes in soil (loam and sand) surrounding a buried 
spherical heat source was studied [ 1 D] analytically and 
experimentally. A rigorous solution describes the 
dynamicresponseofaporousmediumorpacked bedto 
an arbitrary varying inlet temperature using a two 
phase model [ 16D] and a steady state 1 -dim. analysis 
[ 13D] considers condensation in a porous insulation 
occurring when the two surfaces are exposed to two 
different humid environments. Convective and 
diffusive transport as well as phase change are included. 

Fluidized beds 
Heat transfer to the particles of a fluidized bed is 

measured [ 11 D] for the situation where small particles 
pass down through the bed of larger and heavier 
particles. Heat transfer is found to depend primarily on 
the particle residence time. An analysis of thermal 
dispersion and particle to fluid heat transfer [SD] 
considers small particles fluidized in the voids between 
larger stationary particles. Experiments on the 
maximum heat transfer coefficient between an 
electrically heated horizontal tube and a gas-solid 
fluidized bed with glass, dolomite, sand, silicon carbide, 

and alumina particles revealed that none of presently 
available correlations agree with the experimental 
results [SD]. New correlations are therefore proposed. 
Heat transfer between a fluidized bed of spherical and 
non-spherical particles with 2-3 mm size and immersed 
in-line and staggered bundles of horizontal tubes was 
measured at atmospheric temperature and pressure 
[19D]. Results were found to agree with Zabrodsky’s 
theory for wide tube spacing. Heat transfer was also 
measured [ 18D] in fixed and fluidized beds through 
which a liquid is flowing. Mass and momentum transfer 
to Newtonian and non-Newtonian fluids (water and 
cellulose CMC solution) was measured in fixed and 
fluidized beds of uniform cylindrical pellets and spheres 
for Re from 0.038 to 6000 and SC from 800 to 72000 
[12D]. 

NATURAL CONVECTION-INTERNAL FLOWS 

Natural convection in enclosures continues to be of 
interest to many investigators. As has been true for 
some years, many papers relate either to convection in 
fluid layers heated from below or to flow in 
differentially-heated cavities that are generally heated 
on one vertical surface and cooled on another. This year 
there appears to be greater interest in heat transfer 
across shallow layers of fluid. The areas showing the 
largest increase in relative activity appear to be: (1) 
research concerned with thermohaline or double- 
diffusive convection, i.e. buoyancy forces due to 
differences in composition or concentration as well as 
variations in temperature; and (2) natural convection 
flow in porous media-many of these flows are of 

interest in geophysical phenomena as well as of im- 
portance to the fundamentals of fluid mechanics and 
heat transfer. 

A number ofstudies considered special solutions for 
the flow and heat transfer in a horizontal layer heated 
from below. Boundary layer solutions are reported for 
non-linear thermal convection in a horizontal layer 
heated from below with stress free upper and lower 
boundaries [54F]. Steady numerical solutions in the 
form of 2-dim. rolls are found [ 15F] for convection in a 
low Prandtl number fluid ; in a companion work [ lOF], 
an asymptotic model is described which agrees well 
with these numerical results. With poorly-conducting 
surfaces as the upper and lower boundaries, square cells 
are obtained as contrasted to the rolls found for 
conducting boundaries [SOF]. Differences between 
buoyancy-driven and surface tension-driven stability 
in a horizontal layer has been studied in terms of the 
significance of the critical parameters [57F]. 

Other studies of buoyancy-driven flows in fluid 
layers heated from below include the influence of side- 
wall geometry. A numerical study of the post-stability 
flow pattern in a rectangular box has been presented 
[45F]. Growth rate calculations have been performed 
for flow in a cylindrical cavity [62F]. Measurements of 
the effect of temperature-dependent properties on low 
Rayleigh number thermal convection in a cylindrical 
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cell show hystresis [73F]. Analysis on a fluid contained 
in a vertical cylinder with a free surface shows the 

relative importance of surface-tension-driven and 
buoyancy-driven phenomena [72F]. 

Experiments were reported on convection in a layer 
of a nematic liquid crystal which is heated from below 
[19F]. With this material there is a liquid-liquid phase 
change. A numerical study indicates the onset of 
thermal instability in a nematic liquid crystal heated 
from below [3F]. 

An analysis of convection in a Hele-Shaw cell shows 
that dissipation effects reduce the heat transfer [36F]. 
The effect ofheat and mass transfer on Rayleigh-Taylor 
instability with a heavy fluid over a lighter one was 
analyzed [29F]. 

Many studies look at the natural convection from 
one surface completely enclosed within another with 
the fluid filling the space in between them. An example 
would be convection in the annulus between two 
cylinders maintained at different temperatures. A 
numerical analysis of the laminar convection between 
concentric and eccentric cylinders indicates an increase 
in Nusselt number when the center of the inner cylinder 
is below the center of the outer one [51F]. 
Electrochemical measurements are correlated by a 

power law variation of Sherwood number with 
Rayleigh number up to Rayleigh numbers greater than 
10” [60F]. Natural convection in the region between 
two concentric spheres was analyzed with a constant 
temperature or heat flux inner sphere boundary and 

with the outer sphere at variable temperature tending 
to give a stratified fluid layer [64F]. For an array of 
cylinders in a cubic enclosure, experiments indicate a 
higher heat transfer when the cylinders are horizontal 
as compared to when they are vertical [74F]. A 
procedure for fast numerical finite difference calcu- 
lations has been developed and applied to predict the 
convection between spheres and cylinders [34F]. 

Several studies consider the natural convection in a 
vertical layer which is differentially heated by having 
one vertical wall at a different temperature from the 
opposite wall. Some numerical calculations of the heat 
transfer across vertical layers are said to be invalid 
outside a limited range of parameters due to points of 
instability [53F]. Other studies on differentially-heated 
vertical layers include constant heat flux boundary 
conditions [ 17F], non-uniform surface temperatures 
[20F] and the influence of Prandtl number over a large 
range of Rayleigh number [21F]. Extrapolation of 
finite-difference results for such flows can be made to 
zero grid size using only two different grid sizes 
[14F]. Experiments in vertical layers indicate single 
2-dim. cells at low Rayleigh numbers and more com- 
plex flow at higher Rayleigh numbers [66F]. 
Calculations show the potential convection in the 
entrance region of a vertical concentric annulus [ 18F]. 
Transient convection in a vertical layer of water is 
analyzed to include the influence of maximum density 
point [56F]. 

Other studies of heat transfer in enclosures which are 

differentially heated on the sides, i.e. on the two vertical 

faces of a rectangular enclosure, include interferometric 

measurements in a shallow horizontal layer [61F], 
experiments up to high Rayleigh number [7F], and the 
effects of a vertical partition which partially obstructs 
the flow in a horizontal layer [43F]. A study on laminar 
high Rayleigh number convection in a shallow 
differentially heated layer found a power law variation 
of Nusselt number with Rayleigh number with the 
exponent decreasing with increasing Rayleigh number 
[63F]. Numerical calculations provide correlations for 
the heat transfer across a shallow rectangular cavity 
[33F]. Different solutions were obtained for the heat 
transfer across a shallow layer of low Prandtl number 
and high Prandtl number fluids [65F]. 

Using a thymol-blue technique, counterflow was 
observed in a horizontal cylinder connecting two fluid 
reservoirs maintained at different temperatures [9F]. 
An experimental and theoretical study considered the 
flow within a cavity extending from a reservoir [8F]. 
Penetration depth into an open cavity due to natural 
convection has been examined [2F]. An analytical and 
experimental study examined the flow in a shallow 
layer cooled from above with some fluid entering and 
leaving at one of the side boundaries [68F]. 

The natural convection in two separate chambers 
thermally connected by a wall of finite conductivity has 
been examined experimentally and analytically [71F]. 
Flow in an internal cavity connected thermally to a 

natural convection boundary layer on one of its outside 
walls has been examined [67F]. 

Natural convection has also been studied in inclined 
fluid layers. A power integral analysis [59F] indicates 
the parameters for instability and also shows the post- 
stability flow in both inclined and vertical layers. In an 
inclined plane air layer, the flow structure has been 
visualized over a range of inclinations and Rayleigh 
numbers [38F]. Analysis and experiments have been 
used in a study of the flow structure in an inclined 
annulus heated and cooled on its end plates [46F]. The 
influence of thermal resistance of wall boundaries on 
the onset of cellular convection in an inclined channel 
has been examined [23F]. 

Several studies consider double-diffusive convection 

in which the buoyancy forces that initiate and maintain 
the convection are due to both temperature variations 
and concentration variations in the fluid. A review 
[3 lF] of double-diffusive convection illustrates some 
important applications in astrophysics, engineering, 
and geology. An analysis of 2-dim. double-diffusive 
convection shows a transition between oscillatory and 
steady motion [ 16F]. An experimental study shows cell 
formation with a vertical concentration gradient when 
heated from the side [44F]. 

The criteria for stability of a thermohaline flow in 

horizontal layers of finite extent has been analyzed 
[48F]. Instability well below the Rayleigh number 
predicted by linear theories was found for therm0 
haline convection [52F]. The instability of salt-fingers 
in convection has been analyzed over a wide range of 



relative mass and thermal diffusivities [XF]. Under 
some conditions, three Rayleigh numbers are required 
to predict the stability of a rotating doub~e-d~~usi~~~ 
Row [47F]. 

As mentioned in the introduction, many papers 
repart on natural convection in porous media. The 2- 
dim. convection pattern has been calculated in a region 
made up of two or three different layers heated from 
below [4tF]. A general model for the stability offlow in 
a stratified porous layer has been proposed [SF]. The 
effect of geometry on critical Rayleigb number in 
convective modes for Now in an open fluid saturated 
box have been estimated f69F]. A finite element 
analysis predicts the Row in a porous layer heated 
d~fferent~aI~y on the sides [2SF], A boundary layer 
analysis and experiments are compared for convection 
in a vertical porous layer differentially heated [40FJ. 
‘The onset of flow as well as the preferred modes of flow 
in a permeable medium contained between vertical 
coaxial cylinders and heated from below have been 
calculated f4F]. 

experiments on non-Darcy convection in a 
saturated porous medium show that earlier analyses 
overestimate the heat transfer rate [13F]. The 
importance ofdissi~at~~n effects in such flows has been 
demonstrated analytically [12F]. 

Transient analyses have been performed for several 
geometries and boundary conditions with natural 
convection in a porous layer. An experimental and 
analytical study for a vertical layer heated differentially 
incltades the effect of the difference in temperature 
between the liquid and solid [32F’]. An analysis for 
individual localized heat sources has been generalized 
by su~r~os~tjon to get the eKect of muttipfe heat 
sources [24F]. A simplified anaIysis af It-dim. flow 
includes the influence of the heat transfer between the 
fluid and the solid matrix [l 1 F]. The lateral mation ofa 
Bow Jnto a saturated porous medium heated from one 
side has been analyzed [6F]. 

Ana!yticat techniques have been developed to find 
the onset of thermoh~~~ne convection in a porous 
medium with properties varying significantly in the 
vertical direction [SW]. Other papers on double- 
diffusive convection in a porous medium include an 
analysis ofthe formation oftheconvecting layer [22F], 
and astudy ofthe~o~inaverti~~~~a~erh~tedfromthe 
side [SF]. 

Experiments on thermal convection in a differen- 
tially heated rotating annulus include the influence of a 
Nan-a~isymm~tric bottom surface [37FJ Depending 
on the input parameters, different fiow regimes are 
observed in a rotating ant&us with a variable bottom 
surface temperature f27F]. 

The transient and steady state flow in a toroidal 
thermosyphon heated from below and cooled from 
above has been examined including the influence of 
fluid addition [42F]. Experiments and analysis on the 
starting transient in an open loop heated from below 
and centrally has been examined [SF]. A study [76Ff 
has considered the Row in a natural circulation system 

with parallel loops as might be used in the cooling of a 
tight water nuclear reactor. 

Severaf studies consider mixed convection {i.e. 
combined natural and convection) in ducts. The key 
parameter in correlating the bulk temperature risewith 
mixed convection in I~Qrjzontal tubes is found to be the 
Rnyleigh number raised to the lj4th power divided by 
the Graetz number [26F]. An interferometer has been 
used to measure the mean tem~rature distribution 
along a horizontal isothermal tube with internal mixed 
convection [75F]. The effect of buoyancy on forced 
convection inside a vertical tube with radial internal 
fins has been analyzed numerically [49F]. Mixed 
convection in a square cavity in a channel wait with 
varying incj~nation has been examined [30F]. The Aow 
pattern of mixed convection in a shrouded fm array 
depends on the relative temperatures of the fins and 
fluid surrounding them [ 1 F]. 

‘The Galerkin method has been used to calculate 
natural convection in several arrays of vertical rod 
bundles [39F]. An orthogonal curvilinear coordinate 
system has been used for finite difference solutions of 
natural convection in non-rectangular enclosures 
C70F-J. 

Rest&s of an experimental study of natural 
convection from a downward facing horizontal heated 
plate were reported and an explanation and correlation 
of the edge effects was made in terms of displacing the 
origin of a boundary htyer solution [lSFF]. The 
technique oflive-fringe holographic ~nterferometry has 
been used in an investigation ofconvective heat transfer 
beneath a heated horizontal plate in air CUFF]. 
Boundary layer flow of a thermomicroplar fluid past a 
Nan-isothermal vertical plate has been studied 
rlumerical~y [t9FF]. For the class of natural 
convection Rows on inclined surfaces in which inertial 

e~~ctsareun~mport~nt~~nclud~ng~o~sathi~h Prandtf 
number) a focal nonsimj~arity analysis indicates that 
the effects of the surface-normal pressure gradient on 
the temperature profile can be characterized by a single 
focal configuration parameter @SF]. Two- 
dimensional buoyant clouds moving along inclined 
boundaries were investigated theoretically and 
ex~~r~menta~~y and it was found that the “thermal 
theory”gives a good description afthe Row in the slope 
angle range between approximately 5 and 90” [4FF]. A 
conjugate conduction-convection analysis has been 
made for a vertical plate fin. which exchanges heat with 
its Ruid environment by natural convection using a 
~rst-~~ncj~~~s approach [29FF]. 

Transient natural convection adjacent to a vertical 
plate of finite thickness and heat capacity has been 
analyzed [26FF]. An investigation was conducted of 
the transient heat transfer from electrically heated 
conductors placed in cryogenic liquids fl FF]. 

Steady-state heat transfer from spheres and cyIinde~s 
was the subject of several papas. A numerical analysis 
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was carried out to describe the thick boundary layer 
around an isothermal sphere [14FF]. A study was 

made of steady state convection from a solid sphere to 
an incompressible Newtonian fluid with a Prandtl 
number of 0.72 for Grashhof numbers varying from 
0.05 to 50 [ HFF]. Numerical predictions of the flow 
patterns and heat transfer characteristics for laminar, 
steady-state, 2-dim. natural convection around a 
cylinder submerged in an unbounded Boussinesq fluid 
are in good agreement with previously obtained 
experimental data [ 12FF]. Experimental determin- 
ations were made of the heat transfer from circular 
cylinders as the cylinders were varied from horizontal 
to vertical [33FF]. A series solution method for 
laminar free convection boundary layer heat transfer 
over circular and elliptical cylinders has been extended 
to the treatment of nonisothermal objects [21FF]. In a 
study of the effects of vibrations on convection from 
horizontal cylinders, it was observed that for amplitude 
to diameter ratios exceeding 0.5, the relative vibrational 
heat-transfer coefficient increased almost linearly with 
the former irrespective of the frequency of vibration 
[ IOFF]. Experiments were performed to investigate the 
heat transfer characteristics of a short isothermai 
horizontal cylinder attached to an equi-temperature 
vertical plate and the Nusselt number was found to be 
rather insensitive to the cylinder length and the position 
of the cylinder along the plate [30FF]. Experiments 
were carried out on heat and mass transfer from air to 
horizontal tubes in the range 103--IO6 for GrPr and 
GrSc in order to investigate the analogy between heat 
and mass transfer and the effect of mass transfer on the 
mechanism of sensible heat transfer [ 11 FF]. 

Experiments were performed to study the interactive 
natural convection from a pair of heated horizontal 
cylinders situated one above the other in a vertical 
plane [3 1 FF]. numerical solutions have been obtained 
for the upper-plate heat transfer response to a lateral 
offset of the plate from a position of precise alignment 
with a lower plate [32FF]. 

The temperature field of an axisymmetric laminar 
starting plume was measured for the first time using an 
interferometric measurement technique and Abel 
inversion data reduction [28FF]. The steady laminar 
plume above a horizontal laser beam, which is caused 
by absorption of thermal energy from the beam, was 
found to be 3-dim. [6FF]. An integral method was 
applied to the analysis of plume flow [17FF]. Round 
buoyant laminar and turbulent plumes in unstratified 
flow were analyzed [39FF]. The height to which dense 
vertical jets with two opposing buoyancy components 
rise was determined experimentally [34FF]. 

A study of the influences of property variations in 
natural convection from vertical surfaces showed that 
variable properties cause dramatic increases in heat 
transfer rates in the turbulent regime but have virtually 
no influence in the laminar regime [9FF]. A reference 
temperature method was developed by which heat 
transfer to fluids in the supercritical region under 
variable property conditions in laminar freeconvection 

on a vertical flat plate can be evaluated readily and 
accurately [16FF]. Plumes above line and point 

sources in pure and saline water have been analyzed, 
including the effects of nonlinear density variations 
[23FF].A2-dim. finitedifferenceanalysis haspredicted 
the laminar Aow and heat transfer characteristics for a 
vertical ice sheet at 0°C melting into fresh water by free 
convection under steady state conditions [37FF]. 
Time-exposure photographs are used to document the 
nature of the natural convection flow adjacent to a 
vertical ice surface melting in pure water at ambient 
water temperatures between 3.9 and 8.4”C [7FF]. 

The problem of mixed convection from a 2-dim. line 
heat source for both favorable and adverse buoyancy 
effects with respect to an oncoming vertical stream is 
analyzed in terms of two coordinate expansions, direct 
and inverse, valid for small and large streamwise 
distances from the heat source [ZFF]. A buoyancy- 
extended version of the k-c turbulence model is 
described which predicts well the main features of 
turbulent buoyant wall jets [22FF]. Experimental 
determinations were made of the local heat transfer 
rates of an electrically heated, vertical flat surface with 
combined free and forced convection of air in the same 
direction for the case of constant wall heat flux [3FF]. 
The cooling of a low-heat-resistance sheet that moves 
downwards at a velocity much smaller than the natural 
convection velocities that occur was analyzed [ZOFF]. 
The vortex instability of laminar, mixed-convection 
flow over an isothermal, horizontal flat-plate was 
investigated analyticaIly using the linear stability 
theory [24FF]. The free-convection boundary layer 
along a partially heated infinitely long vertical cylinder 
disturbed by a steady horizontal flow was studied and 
the asymptotic solution indicates that the boundary 
layer is mainly induced by the buoyancy force near the 
thermal leading edge [3XFF]. In a heat transfer and 
flow visualization investigation performed for a single 
cylinder and for single and double rows of cylinders 
submerged in an open channel flow, the regimes 
associated with free convection, combined convection 
and forced convection have been delineated [SFF]. In a 
pair of companion papers, nonlinear 2-dim. magneto- 
convection in a Boussinesq fluid has been studied in a 
series of numerical experiments both for the regime in 
which the development of nonlinear convection 
develops and for the dynamical regime that follows 
[35FF, 36FF]. Real-time holographic interferometry 
has been used to study the convective heat transport in 
a fiat-pIate solar collector [8FF]. Models ofleaves and 
plants were used to study heat and mass transfer 
problems in agriculture, using an electrochemical 
technique [27FF]. 

CONVECTION FROM ROTATING SURFACES 

Experiments and theory determined mass transfer to 
rotating disks and rings in laminar, transition, and 
developed turbulent flow [3G) on different portions of 
the surface. Measurements of heat transfer and friction 
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loss in laminar radial flow through a stack ofdisks [4G 3 
determined that centrifugal and Coriolis forces caused 
by rotation lead to asignificant increase in heat transfer 
with simultaneous reduction in friction. The effect of 
impingement to increase heat transfer in condensation 
on a rotating disk was found [7G] to be larger 
experimentally than can be accounted for analytically. 
Naphthalene sublimation was used to measure mass 
transfer [ZG] from a rotating inclined plate. The results 
revealed a tremendous increase in the transfer rate 
where the surface is exposed to wake flow. Computer 

results are presented [ ZG] for developing laminar free 
convection in an open ended vertical annulus with a 
rotating inner cylinder. The Prandtl number is 0.7, the 
radius ratio 0.5, one wall is isothermal and the other 
adiabatic. The Taylor stability problem was solved 
[SC] for a narrow gap between a hot rotating inner 
cylinder and a cool stationary one. The energy 

separation in vortex tubes can be increased [6G] when 
the tube is conical with a small opening angle. The 
length of the tube is also decreased. 

COMBINED HEAT AND MASS TRANSFER 

Combined heat and mass transfer is important in 
such diverse applications as cooling of high- 
temperature gas turbines, chemical processing, heat 
transferin soils,anddryingofpaper. Manyofthere~ent 
studies, motivated by a specific application, have even 
broader significance in terms of adding to our 
understanding of fluid mechanics and convective 
transport. 

A numerical prediction of the film cooling 
effectiveness for discrete hole injection compares 
favorably with experimental results at low injection 
rates [2H]. The effects of heat transfer in porous layers 
as might occur on transpiration-cooled turbine blades 

has been analyzed; this work includes the effect of 
surface curvature [SH]. 

The influence of the injection normal to a surface on 
external mass transfer has been analyzed [3H]. The 

Nusselt number distribution along a channel with 
surface injection or suction has been calculated [13H]. 

A number of analyses consider transient heat and 
mass transfer where there is either a sudden or gradual 
change in a boundary condition such as wall 
temperature. The influence ofblowingor suction on the 
heat transfer in the forward stagnation region ofa body 
following a step change in wall temperature or heat flux 
has been examined [7H]. A finite difference analysis 
considers buoyancy-driven convection due to concen- 
tration and temperature variation on an isothermaf 
vertical flat plate [IOH]. An analysis considers the 
drying near a cylindrical heat source embedded in a 
moist porous media [SH]. Another study on transient 
convection combines analysis and measurements of 
coupled heat and mass transfer in an unsaturated 
porous media [4H]. The thickness of a frost layer on a 
cold surface over which a humid stream flows increases 
with time raised to the one-half power [ 12H]. 

Combined heat and mass transfer has been examined 
using laminar boundary layer analysis [6H]. A film 
model was developed to analyze coupled heat and mass 
transfer in multi-component systems [llH]. The 
relative importance of thermal diffusion and diffusion 
therm0 effects have been examined for different 
boundary conditions of wall temperature and free 
stream concentration [ IH]. 

The effects of finite propogation of disturbances 
using coupled wave equations of heat and mass transfer 
have been reported [9H]. 

CHANGE OF PHASE 

Boiling 

Nucleate ~~~il~~~. A discussion of the applicability of 
the bubble flux density concept was discussed [35.J] 
then extended for use with methanol. A low nucleation 
site density model for surface quenching was extended 
to high densities [4OJ] where the areas of influence of 
nucleation sites overlap. The enhancement of eddy 
transport in shearing two-phase flows by mi~roconven- 
tion was demonstrated [8OJ]. An analytical and 

experimental investigation of bubble waiting time 
showed that bubble nucleation in subcooled flows 
contributes significantly to convection [SJ]. Vapor 
bubble growth on a heated wall in a stagnant liquid was 
analyzed and a simple relationship between time and 
the diameter of a bubble at departure was found [22J]. 
Stroboscopic photography was used to determine 
instantaneous size and velocity of evaporating bubbles 
in sprays [45J]. Bubble growth rate data taken in 
various mixtures of liquids documented the effect of 
liquid mixture makeup [86J]. Further support of the 

Forester-Zuber growth rate law was found and a 
universal correlation was presented for developed 
boiling heat transfer on surfaces of known micro- 
geometry and on commercial heating surfaces [77J]. A 
photographic process was employed to create a regular 
array of pits in a copper surface [S 1 JJ ; data from this 
surface showed enhancement of heat transfer and a 
signiticant effect on the boiling curve and burnout. The 
use of a gold film deposited on a glass substrate as a 
surface heater and resistance thermometer was 
demonstrated [59J]. Since the film was transparent, 
photographs could be taken from beneath. The 
evolution of enhanced surfaces was discussed [94J]. 

Forced convection boiling. A modification of an 
existing nucleate boiling correlation was proposed 
[SlJ]. The modification was the replacement of the 
bubble nucleation and growth term with one derived 
from natural convection nucleate boiling data. A 
previously formulated boiling heat transfer correlation 
for compact plate-fin heat exchangers was extended to 
include the effect of velocity [17J]. 

The results of a transition boiling study were 
summarized 1635). Effects studied were: Row 
conditions; method of analysis; method of test 

operation, and equipment arrangement and 
construction. 
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A fully developed and adiabatic two-phase annular 

flow model with liquid entrainment was derived for 
flow in a pipe [47J]. A theory was presented for two- 
phase bubble flow in channels [68J]. An additional 
eddy diffusivity component was given for bubble 
agitation. The theoretical predictions of profiles of 
velocity and temperature as well as skin friction and 
heat transfercoefficient werecompared toexperimental 

data [69J]. 
Heat transfer measurements were made in the post- 

dryout region of an air-water dispersed flow [SOJ]. The 
effectiveness of wall-to-drop heat transfer depends 
mainly on the wall superheat for surface temperatures 
below the minimum film boiling temperature. The 
thermal entrance length exceeds that ofsingle phase gas 
flow and decreases with increasing wall temperature. 

Turbulent droplet flow heat transfer was analyzed for 
the thermal entrance region of a tube [65J]. 

A model of the flow boiling crisis in high vapor 
quality annular how was presented with some 

experimental results [73J]. Dryout measurements were 
made for the flow of boiling water in an annulus with 
various profiles of axial heat flux [llJ]; for BWR 
geometries, total dryout power was only weakly 
dependent upon the profile shape. In [36J], previously 
published generalized CHF correlations were used to 
predict the well known relation between CHF and exit 

quality. A graphical method was used to present CHF 
data; three regimes were identified [37J]. These 
regimes were further discussed with respect to the flow 
patterns [38J]. A correlation of existing experimental 
data for CHF in uniformly heated rectangular channels 
was formulated [39J] and new experimental results 
with small heated length to diameter ratios were 
presented. CHF and liquid film flow rates were 
measured with upward flow in a uniformly heated tube 
[9OJ]. The exit film how rate was found to be near zero 
at CHF conditions when the quality exceeded 50%. 
CHF in a helically-coiled tube was experimentally 
investigated [33J] ; subcooled CHF decreases in the 
coil whereas high quality CHF is increased by coiling 
the tube. CHF experiments were performed in a 
LMFBR steam generator test facility [26J] ; empirical 
correlations were presented. Dryout and pressure drop 
data were taken for helically coiled steam generator 
tubes [92J]. A criterion was developed to determine 
whether gravity influences burnout in upward flow or 
in downward flow over horizontal cylinders [29J] ; low 
speed downflow runs indicated a buoyancy burnout 
mechanism that replaced the more common hydro- 
dynamic burnout. A theory was given for the thermal- 
hydraulic phenomena, including dryout, during 
recovery of heated tlow channels [84J]. The theory 
predicted the equivalent collapsed liquid level and the 
two-phase mixture level in a channel during certain 
nuclear reactor transients. A best-estimate prediction 
of transient CHF during reactor blowdown was 
presented [46J]. Several correlations based on local 
conditions were tested against recent blowdown heat 
transfer data. 

A discussion of the spring model in superheated 
sodium boiling was given [273] and density wave 
oscillations in once-through sodium-heated steam 

generator tubes were experimentally studied [91J]. 

Natural convection boiling. Transient boiling with 
various heater surfaces (wires and patches) and step 
power inputs was experimentally investigated [56J]; 
the onset of boiling was found to be time dependent. 
The variation of the local heat transfer coefficient 
around the circumference of a horizontal tube was 

found experimentally [12J]. Reynolds analogy was 
applied to film boiling on a horizontal plate and a heat 

transfer coefficient correlation was derived [42J]. 
Experimental and analytical studies of film boiling 

around small spheres [78J] were reported with a 
discussion of the relationship to vapor explosions. For 
subcooled liquid boiling, the ratio, not the difference, 
between the subcooled and saturated liquid film boiling 
Nusselt numbers is significant. Transient heat transfer 
from a horizontal cylinder initially in film boiling but 

responding to the passage of a shock wave was 
measured [3 lJ] and analyzed [32J]. The transient heat 
transfer rate was as much as 20 times the steady state 
rate. The vapor mass is a key variable determining 
whether collapse is achieved. Implications for vapor 
explosions with liquid in contact with molten nuclear 
fuels were discussed. 

An analysis was made of steady natural convection 
film boiling on a vertical plate in a porous medium 
[19J] ; at a given Rayleigh number, the Nusselt number 
was found to be uniquely dependent upon the vapor 
film thickness. Contamination of nucleation sites by 
corrosion products was investigated [34J]. The effect 
of plasma-deposited polymers on nucleate boiling 
behavior of a copper surface was experimentally 
determined [3OJ]. A thin coating of TFE enhanced 
nucleate boiling while a thicker coating reduced it. A 
surface energy effect was postulated to explain this 

behavior. 
Experimental results were presented for boiling of 

binary mixtures ofvaryingcompositions [23J] ; bubble 
growth and shape change characteristics were as 
observed with pure liquids. The effects of heat flux, void 
ratio, and diameter ratio on boiling heat transfer in a 
concentric-tube open thermosyphon were examined 
[75J] ; heat flux could be found as the summation of 
single phase free convection and boiling correlation 
values. Boiling of water drops superheated in a 
nonvolatile liquid [SJ] is initiated at the water 
hydrocarbon interface by either growth of a single 
bubble or by streams of bubbles. The superposition of a 
magnetic field on boiling of mercury or mercury plus a 
wetting agent was shown to result in significant increase 
in the heat transfer coefficient [93J]. Increased held 
strength also lowered incipient boiling heat flux and 
encouraged transition to film boiling. Wave pro- 
pagation of film or nucleate boiling over a heated 
surface was investigated analytically and experiment- 
ally [98J]. 
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A new criterion ofdryout was formulated for upward 
mist flow in tubes [49J]. An experimental investigation 
of CHF in horizontal channels with circumferentially 
varying heating [44J] showed that minimum CHF 
values with nonuniform heating were somewhat higher 

than those for uniformly heated channels. 
Measurements were made of CHF and rate of droplet 
entrainment when boiling a falling liquid film on the 

outside surface of a vertical tube [89J]; CHF was 
categorized according to film flow rate. CHF was 
measured in a countercurrent liquid vapor flow in a 
closed-end vertical tube [55J]. The length-to-diameter 
ratio of the test section was shown to influence the 
flooding CHF. 

Condensation 

Film coFlden~~t~(~n. A mixing length model was used 
to calculate velocity profiles and pressure drop in 
turbulent downward-directed Row with film evapor- 
ation or condensation [54J]. An experimental study of 
steam condensation on subcooled liquid film within an 
inclined duct [74J] showed that local heat transfer 
coefficients may be related to the turbulence intensity in 
the film. verification was presented of multicomponent 
mass transfer models for condensation inside vertical 
tubes [95J]. Calculations for optimizing surface design 
were made of condensation rates on fluted surfaces 
[2J]. A numerical solution was found to wavy laminar 
film-wise condensation on vertical walls [79J]. Steady 
film condensation outsidea wedge or coneembeddedin 
a porous medium filled with dry saturated vapor was 
analyzed [l SJ] ; a closed-form solution was found for 
Nusselt number as a function of Rayleigh number and 
film thickness. Methods were presented [7lJ] for 
determining suitable measures to prevent disturbances 
in heat exchangers due to periodic accumulation of 
condensate on tubes. Laminar film condensation of 
binary vapor mixtures was analyzed revealing some 
interface characteristics and showing the effect of 
linearly varying the wall temperature [72J]. 

Condensation rate and vapor and condenser surface 
temperature measurements were made during film 
condensation of mercury on vertical, nickel-plated, 
copper surfaces [SSJ]. Experimental heat transfer and 
hydrodynamic results in film condensation on vertical 

surfaces [25J] indicated the effects of the strength, 
frequency and uniformity of an electric field. 

Gold surfaces were experimentally shown to 
promote dropwise condensation of steam [36J]. 

Free condensation. The validity of the basic 
assumptions of dropwise condensation was assessed 
[67J]. Results of an experimental study of surface 
characteristic and material property effects on 
dropwise condensation were presented [I J] and, in a 
technical note [XSJ], a discussion was presented on the 
effect of Knudson number on dropwise condensation. 
An analysis was made for the stagnation region of a 
spherical water drop moving in an environment 

composed of particulates and a saturated mixture of the 
following gases : condensable steam, noncondensable 
and nonabsorbable air, noncondensable but ab- 
sorbable elemental iodine, and chemically reactive 
methyl iodide [20J]. Numerical analyses were made of 
(1) condensation of multicomponent vapor in the 
presence of inert components [PJ] and (2) laminar 
condensation near the stagnation point of a droplet 
moving in a saturated mixture of steam, air and a 
noncondensable but absorbable gas [21J]. 

Vaporization 

Vaporization of$lms. The system mean void fraction 
model was applied to problems involving incomplete 
vaporization [SSJ] and an analysis was made of the 
phenomenon of hydraulically-controlled dryout in a 

vertical channel [83J]. An analysis of laminar mist flow 
along a flat plate [87J] showed that the high heat flux 
resulted from a superposition of film evaporation and 
convective heat transfer. Data was taken on 
evaporating films on the inner wall of horizontal tubes 
[41 J] ; spiral grooves can double the evaporation heat 
transfer coefficient due to the capillary phenomenon. 
Local heat transfer coefficients were determined for 
evaporation oftricklefilms on vertical surfaces [7OJ]. A 
model ofparticle bed dryout based on the phenomenon 
of flooding [6OJ] predicted a dryout heat flux that 
depends on the square root of the particle diameter. 
Enhancement of evaporation initiated by the 
differential vapor recoil mechanism was experimentally 
studied [62J]. 

Experiments on refilling and rewetting hot 
horizontal tubes [14J] indicated that gravitational 
effects are important and lead to flow stratification; an 
analysis followed [ 15J]. A similar experiment [16J] 
showed a liquid tongue running along and rewetting 
the bottom surface ; the phenomenon was thought to be 
hydrodynamically controlled. Quenching data were 
presented for reflooding of zircaloy and stainless steel 
clad rod bundles with cold water [64J] showing that 
zircaloy quenches faster under similar conditions. 

Free ~up~~i%~t~on. A numerical solution was 
presented [66J] for evaporation in a spray evaporator ; 
a reflooding index is related exponentially to the 
droplet diameter and wetting ratio. Turbulent droplet 
flow heat transfer under post-dryout conditions was 
numerically analyzed [97J]; the droplets were 
distributed heat sinks and the eddy diffusivity function 
of Deissler was used for the vapor phase. An analytical 
study of both diffusion-controlled and radiation- 
controlled evaporation of a spray [6J] demonstrated 
that evaporation characteristics were correlated best 
by the droplet initial Sauter number. An analysis was 
presented for water evaporatingin high temperatureair 
[ZSJ]. Experiments with liquid droplets evaporating 
into a flow of gas capable of condensing [43J] showed 
some surface condensation of the ambient gas and 
indicated that the process was limited by heat and mass 
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transfer. An augmentation of evaporative cooling of 
liquid drops falling freely was attempted by coating the 
drops with an immiscible, volatile liquid [53J]; the 

dependence on initial drop temperature, volume ratio 
of volatile liquid to the drop liquid (water) and the air 
temperature and humidity was investigated. An 

analysis was made of unsteady evaporation and 
condensation heat and mass transfer in a single drop 
[64J] and an experiment was made of condensation or 
evaporation ofa volatile liquid drop or condensible gas 
bubble in a liquid medium [82J]. An approximate 3- 
dim. numerical model for predicting characteristics of 
spray units was presented [61J] that predicted local 
distributions of dry-bulb temperature, absolute 
humidity and air streamlines within the flow. 

An analysis of bubble growth during depressuriz- 
ation of liquid was made [13J] and a method for 

correlating the extent that the pressure undershoots the 
saturation pressure was given [3J]. The limit of 
homogeneous nucleation under these conditions was 
shown to lie close to the liquid spinodal line [48J]. The 

limits of superheat of some binary mixtures were 
measured at high pressure [7J] and a model was 
devised; the results apply to the burning of droplets of 
fuel blends which are mixtures of volatile and 
nonvolatile liquids. An analysis of thermal, mass and 
dynamic interaction between a vapor-gas bubble and a 
liquid during a rapid pressure change or within a sound 
field was presented [57J]. 

Other 
Experiments were made for mass transfer to air 

bubbles adhering to the inside wall of a tube carrying 
supersaturated liquid [4J]. The effects of mass, 
momentum and thermal variations on the dynamics of 
inert gas bubbles moving in a channel flow of a liquid 
and dissolved gas solution were analyzed [52J]; 
differing axial distributions of pressure and tempera- 
ture were presumed. A method was suggested [SSJ] for 
determining mass transfer coefficients at liquid-liquid 
interfaces. An analysis was made ofthe thermocapillary 
migration of a fluid droplet inside a drop assuming 
space laboratory environment [76J]. 

RADIATION 

Radiation in participating media 
Radiative transport in emitting, absorbing, and 

scattering media is of continuing interest. The basic 
theory for radiation transfer in an arbitrary medium 
has been derived using the genera1 form of the Bethe- 
Salpeter equation [4K]. Time-dependent radiative 
transfer is studied in a semi-infinite medium with a 
reflecting boundary [8K]. The accuracy of an 
approximate method for calculating the intensity and 
fluxes of radiation from an inhomogeneous two-phase 
layer with emitting and reflecting boundaries has been 
ascertained for a wide range of initial parameters [ 1 K]. 
Studies are reported of infrared (10 pm) induced 
evaporation of large water droplets [ lSK]. 

Considering gas enclosures the geometric-mean 
transmittanceand total absorptance between two finite 
areas can be reduced to single numerical integrations, 

thus eliminating much of the mathematical complexity 
[18K]. A new type of spectrometer has been developed 
for performing rocket measurements of the near 
infrared absorption spectrum of the upper atmosphere 
[llK]. It is shown that all gaseous admixtures in a 
radiation-absorbing non-equilibrium gas may be 
induced to drift along the light beam. This effect may be 
useful for separating sulphur isotopes [9K]. 

Results of an analysis of radiative--convective heat 
transfer of an axisymmetric blunt body in hypersonic 
air flow are presented for ablating graphite surfaces 
[ 13K]. An analysis of radiative transfer in a plane slab 
takes an azimuthal dependence of the radiation held 
into account, a situation which is ofsignificant practical 

importance [ 16K]. 
Simple solutions for the effective thermal conduc- 

tivity for combined radiation and free convection in an 
optically thick heated fluid layer compare favorably 
with numerical solutions of the governing energy 
equation incorporating both turbulent heat transport 
and thermal radiation [SK]. Considering turbulent 
flow of a multiphase medium with absorbing, emitting 
and anisotropically scattering particulates bounded by 
a heated or cooled constant-temperature wall, 
numerical results are presented for a wide range of the 
governing parameters [3K]. 

A study of the radiative heat flux in absorbing, 
emitting and linear anisotropically scattering cylin- 
drical media shows that in engineering applications 
approximate methods may be used to accurately model 
the radiative contribution to overall heat transfer rates 
[2K]. Analytical studies ofmultidimensional, radiative 
transfer with anisotropic scattering are in satisfactory 
agreement with corresponding experiments [ lOK]. 

A new gray-gas approximation for carbon dioxide 
standard emissivity provides simplicity and reasonable 
accuracy (errors < 6%) for temperatures between 800 

and 1800 K and for 1 < pL < lo3 cm atm [6K]. An 
experimental investigation of thermal radiation of 
certain gaseous hydrocarbons reveals that the 
emissivity is strongly dependent on the number of 
carbon atoms in a molecule [ 17K]. 

The P- 1 approximation has been generalized for 
non-gray problems offering the advantage that all 
solutions can be expressed in terms of the spectral 
absorption coefficient. It is shown that this technique is 
superior for gases [ 19K]. The radial heat flux and its 
divergence are determined both exactly and ap- 
proximately for homogeneous suspensions of small 
particles in an isothermal cylindrical medium. A closed- 
form approximate solution for the surface heat flux is in 
excellent agreement with exact results [7K]. 

Infrared measurements of the stratospheric com- 
position indicate that measured NO and NO, 
concentrations are in disagreement with absolute 
values predicted by the Oxford 2-dim. diurnal model, 
but in close agreement with their day-time changes 
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[14K]. By using a new non-steady measuring method, 
the different radiation fluxes, as well as the net radiation 
fluxes, can be established for rivers [12K]. 

Surface radiation 
The calculation of shape factors for radiative transfer 

has been extended to rectangular, plane surfaces of 
arbitrary position and size. A computer facilitates a fast 
evaluation of the derived equations [2L]. Effective 
emissivities of conical cavities having diffuse surfaces 
are computed by an iterative procedure and effective 

reflectances are determined with a series technique 
which involves powers of the reflectance of the wall 
material [3L]. 

A perturbation analysis for periodic heat transfer 
from radiating fins shows that within the range of 
parameters of this study, the net effect is to decrease the 
mean temperature and increase the mean heat transfer 
rate [ 1 L]. A technique for measuring reflectance factors 
under diurnal and intermittent cloud insolation 
conditions using hand-held radiometers has been 
developed. The results of such measurements indicate 
that this technique may be useful for achieving uniform 
reflectance factors for remote sensing studies [4L]. 

MHD 

There is a continuing interest in MHD and its 
applications. In particular, MHD generators are 
considered. 

Because of the high temperatures and the large sizes 
of large scale MHD generators, radiative heat transfer 
in the combustion gases becomes a significant energy 
transport mechanism [8M]. Studies of heat and mass 
transfer in MHD channels indicate that heat transfer by 
gas radiation almost equals that by convection for 

smooth walls, and amounts to 3/4 as much as the 
convective heat transfer for rough walls [3M]. A 
combined convection-gas radiation, two-zone flow 
model is formulated for studying heat transfer 

characteristics of MHD radiant boilers [4M]. Studies 
ofcombined conduction,convection, gas radiation and 
particle radiation in a reference MHD diffuser (1700 
MW thermal) show that heat transfer by convection 
amounts to 25 MW and radiative heat transfer from 44 
to 79 MW depending on the rate of ash carryover into 

the channel [2M]. 
The results of an analysis of a fully developed forced 

andfreeconvective MHDflow betweentwoelectrically 
conducting vertical plates indicate that an increase of 
the thermal conductance ratio of the two plates leads to 
both an increase of the velocity and of the temperature 
[7M]. For establishing heat transfer scaling laws for 
MHD channels and diffusers, a quasi-3-dim. model has 
been developed for determining convective and 
radiative heat transfer characteristics [ lM]. 

Open-cycle MHD generator channel development is 
discussed with emphasis on critical design criteria and 
limitations on channel operating parameters [6M]. 
The development of steam generator components for 

open-cycle MHD power plants requires, for example, 
the design of radiant furnaces [SM]. Results of 
performance studies are reported for a multiphase 
boiling MHD generator [9M]. 

~~lM~RlC,~L METHODS 

Papers reporting the use of numerical methods for 
solving specific physical problems are listed in the 
appropriate category pertaining to the problem. 
Occasionally, some numerical innovations are em- 
bedded in such papers. The literature cited in this 
section is primarily aimed at the development of a 
numerical method rather than its application. 

The inverse heat conduction problem has been 
treated [ 1 N, 17N]. A calculation scheme for transient 
phase change around a cylinder is given [lSN]. 
Variable time step methods for the Stefan problem have 
been examined [I ON]. Ref. [4N] describes an efficient 
technique for calculating two-dimensional tempera- 
ture distributions. Turbulent temperature fluctuations 
in liquid metals have been numerically simulated [SN]. 
A Monte Carlo technique has been adapted for the 
determination of radiation interception [ 16N]. An 
implicit Eulerian method has been used for steam 
generator analysis [SN]. Transient conjugate problems 
have been treated by a quasi-steady approach [15N]. 
Singular perturbation techniques using finite elements 
have been developed for 1 -dim. [6N] and 2-dim. [7N] 
convection-diffusion problems. Ref. [ 12N] describes a 
generalized finite-difference method for heat transfer 
problems in irregular geometries. A general calculation 
procedure for 2-dim. fluid flow and heat transfer has 
been described [ 1 lN]. The finite analytic method has 
been used for the heat transfer in a cavity [3N]. 

A method has been developed for the solution of 
nonlinear boundary-layer equations [ 14N7. The 

concept of group transformations has been apphed to 
the nonlinear heat diffusion equation [9N]. The 
technique of computer-extended series is developed in 
the context of natural convection [ 13N]. A variational 
approach has been employed in the prediction of 
laminar flow with dissipation [ 12N]. 

HEAT TRANSFER APPLICATIONS 

Heat exchangers and heat pipes 
A new method for the prediction of heat transfer 

coefficients is presented [IQ] in gas flow normal to 
banks offinned and smooth tubes with triangular pitch. 
A new design [ 14Q] of a shell and tube heat exchanger 
resulted in a slight increase in heat transfer coefficients 
with a significant reduction in pressure loss. Tests on 
pilot plants [6Q] revealed that measured heat transfer 
coefficients and pressure drops for air cooiers do not 
satisfy available correlations for asmall number ofrows 
or forced draft. Experiments [2Q] studied the influence 
of fouling biofilms on heat transfer under controlled 
conditions. Results compare well with those of a simple 
mathematical model. 
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Several papers are concerned with the performance 
evaluation criteria of heat exchangers. Previous work 
by Bergles and Webb was extended to establish such 
criteria for single phase flow in tubes including the effect 
ofshell sideenhancement and fouling [ 19Q]. It was also 
investigated [ 13Q] under what conditions such criteria 
remain unchanged when the two fluid streams are 
switched. Some fundamental relations were developed 
[12Q] to describe the performance of a tubular heat 
exchanger based on N TU, heat capacity ratio, and a 
temperature efficiency parameter. A method of 
stochasticapproximation [16Q] toidentifyparameters 
of parallel flow heat exchangers compares favorably 
with unsteady experimental results. 

reported and interpreted by a surface reaction model. A 
theory is proposed [9S] to describe the effect of nozzle 
erosion on heat transfer in a ladle ofmolten steel during 
pouring. The nozzle temperature is calculated and 
compared with plant observation. Experiments 
established [14S] that the lowest temperature on a 
surface cooled by a liquid spray is a linear function of 
the spray mass flux. The vertical temperature 
distribution is calculated [2S] in a storage tank fed at its 
top with warm fluid in laminar flow. 

A study [9Q] concludes that tiny fins result in the 
best surface geometry for vertical condenser tubes with 
outside condensing surfaces. The design of multizone 
condensers for desuperheating, condensing, and 
subcooling is discussed [ 1 lQ]. A rotary dry cooling 
tower was developed [17Q] with disks rotating 
between a hot water bath and a forced air stream. A 
layer of oil on top of the water eliminates evaporation. 
An analysis was verified by experiments. The prediction 
of boiling heat transfer is discussed [5Q] for a compact 
plate-fin heat exchanger with frequent interruptions. In 
this extension of a previous study the assumption is 
made that local heat transfer coefficients are related to 

local metal-to-liquid temperature difference. 

Different designs of air cooled gas turbine blades 
have been discussed [lOS]. Five computer programs 
used to calculate heat transfer rates to gas turbine 
blades have been compared with experiments [SS] at 
the University of Oxford free piston wind tunnel. The 
programs differ by their turbulence models. All 
calculated results show the right trend but quantitat- 
ively they differ considerably. An equation Nu = c,Re” 

is developed [ 16S] from literature data describing 
average heat transfer coefficients to turbine blades. An 
analysis [6S] simulates the disturbance of a 
combustion chamber with film cooling by air jets with a 
model replacing the jets by cylinders normal to the 
chamber wall. The results are compared with 
experiments. Model tests determining heat transfer in 

the casings of turbines with a loop system of steam flow 
have been performed [22S] and the results are 
recommended for use in the design of similar casings. 

A parametric study [8Q] of a particulate direct 
contact heat exchanger shows that heat exchange 

improves as the particle diameter decreases, the heat 
capacity ratio, the flow rate ratio, and the approach 
temperature increase for laminar bulk flow and particle 
Reynolds numbers from 20 to 500. Experiments on heat 
transfer in tubeless evaporators [15Q] are compared 
with a theory assuming that uniformly distributed 
drops heat up and evaporate. 

An experimental and analytical study [7S] points to 
the conclusion that instantaneous heat transfer in an 
engine exhaust port is primarily caused by jet induced 
fluid motion. 

Three papers deal with the thermal performance of 

regenerators. Addition of 15% steam to combustion air 
doubled the heat transfer coefficients during the cooling 
period and increases them by 15% during the heating 
period [3Q]. It is demonstrated [7Q] how latitudinal 
conduction can be incorporated in lumped heat 
transfer coefficients for thermal regenerators. A 
theoretical model and experiments of heat and mass 
transfer in rotary regenerators with condensation, 
evaporation, and convection are described [18Q] and 
results obtained with an experimental facility are 
presented. 

The process in a liquid metal fast breeder reactor 
under natural circulation is simulated dynamically by a 
computer code [4S] using specifications for the Clinch 
River Breeder Reactor Plant. The results of 
experiments are reported [SS] for a circulating 
fluidized bed with coal combustion. A mathematical 
model of heat transfer from a large enclosed flame in a 
rotary kiln [lSS] predicts the gas and refractory 
temperature profiles. It is based on the Hottel-Sarofim 
method and tested against experimental results. 

Two papers are concerned with heat pipes. From an 
experimental study of the transfer mechanism in the 
evaporator [ 1 OQ] it is concluded that the heat transfer 
mechanism in a wick of screens is identical to that in a 
sintered powder wick. Heat pipes filled with sodium 
reduced the wall temperature at the stagnation line of a 
space shuttle wing from 1500 to 900 K [4Q]. 

Experiments on the cooling of high pressure rocket 
thrust chambers with liquid oxygen [2OS] verified a 
supercritical heat transfer correlation developed from 
heated tube experiments. Design and off-design 
performancecalculations ofspace radiators with liquid 
coolant circulation and radiating to the surroundings 
have been performed [12S] with and without heat 
pipes. An analysis shows [3S] that conventional 
methods do not describe adequately the unsteady 
convective heat transfer in a gun barrel. 

A three-parameter equation is developed [ lSS] with 
the parameters Re, Pr, and K = &U/L, using the 
improved equation 

General 

Experiments [ 13S] on water vapor contribution to for the shear. Velocity and temperature boundary 
the erosion of steel in high temperature Rows are layers are calculated with this equation. Frictionally 
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generated heat in a polymer may lead to a heat 
explosion [ 19S] when this heat is not balanced by heat 
transfer to the surrounding. A model is proposed [ 1 IS] 
for the analysis ofheat and mass transfer in hydroscopic 
capillary extruded products using equations for the 
liquid and vapor fluxes depending on temperature and 
equilibrium moisture content gradients. 

An analysis [ 1 S] of heat transfer during cooling of 
spherical food products establishes the parameter 
range for best effectiveness when theair passing over the 
product is continually wetted by a chilled water spray. 
The temperature separation in a HartmannSprenger 
tube can be improved [ 17S] by coupling it to a 
resonator and by use ofa nozzle with a thin rod along its 
axis. The cost of large scale heat transfer research and 
testing makes it necessary to carefully optimize the test 
program [2 1 S]. 

Solar energy 

Topics of major interest among the heat-transfer 
related solar energy publications include: solar 
radiation, flat-plate and concentrating collectors, 
thermal storage and system performance, both passive 
and active. The standard technique of analyzing solar 
photometer data to determine atmospheric optical 
depth and the spectral solar constant inadvertently 
weight the data unequally [ IOT]. Seasonal variations 
of atmospheric clearness numbers for use in clear day 
solar radiation modelling are proposed [9T]. 

Two analyses of a non-linear flat-plate collector are 
presented in which the overall loss coefficient is 
assumed to be a linear function of the temperature 
difference between the tluid in the collector and the 
environment [5T, 7T]. A brief analysis re-examines the 
original justification for linear and second-order 
efficiency characteristics [6T]. Simple stagnation- 
condition measurements for solar collectors can 
provide a direct measurement of the temperature 
dependence of the heat loss coefficient [8T]. Based on 
available correlations, relations were found for the 
local maxima’s and minima’s in heat transfer as the gap 
spacing is varied in flat-plate solar collectors [ 15T]. A 
simplified equation was proposed for evaluating the 
top loss coefficient for a flat-plate solar collector [2T]. 
New expressions for the heat transfer factor F, based 
on inlet, outlet and mean fluid temperatures were 
derived for use with the Hottel-Whilher collector 
model by the use of restrictive heat transfer 
assumptions [14T]. The thermal boundary layer 
problems associated with flat-plate solar collectors 
have been analyzed using fourth degree polynomials 
[17T]. A fluorocarbon loaded solar collector system 
was found to have efficiencies as high as 83”/, for a 
collector-to-ambient temperature difference of ap- 
proximately 10’ C [23T]. Experimental thermal 
efficiencies for a distributed flow, subatmospheric 
pressure, flat-plate solar collector were reported for a 
wide range of environmental and operational 
conditions [24T]. New experimental results make it 
possible to draw more general conclusions about the 

effect of tilt and end clearance on the performance of 
honeycomb in suppressing convection in flat-plate 
collectors [30T]. The number of slabs and their 
thicknesses are both important parameters in the 
performance of thermal trap collectors [22T]. The 
energy absorbed by a fluid confined within a circular- 
cylindrical cover was calculated [26T]. 

The intermediate range of concentration ratios 
which can be achieved with compound parabolic 
concentrators(CPC)without diurnal tracking provides 
both economic and thermal advantages for solar 
collector design even when used with non-evacuated 
absorbers [21T]. Mathematical formulations were 
developed to study thermal processes in a CPC 
collector titted with a concentric, evacuated double 
pipe to serve as a heat absorber [ 1 IT]. 

Stratification effects in a rock bed storage unit were 
analyzed in terms ofa stratification coefhcients which is 
shown to be a system constant that depends only on 
three dimensionless system parameters [20T]. 
Significant reductions in the collector area require- 
ments for a particular system performance can be 
realized by employing seasonal sensible storage [3T]. 
The characteristic variation of the rate of heat transfer 
to and from a latent heat thermal energy storage 
capsule was investigated analytically and experiment- 
ally [12T]. The addition of phase change thermal 
storage for buffering will substantially improve the 
performance of parabolic dish solar thermal power 
plants [ 16T]. 

A design method for direct gain passive solar heating 
systems is given which is more general than the “Solar 
Load Ratio” method [ 18T]. The effect of air flow rate in 
collector-storage walls was analyzed [29T]. A heat 
transfer model of a parallelepiped tank full of water and 
covered with a translucent insulation ofdiffuse material 
to solar energy, was developed considering the multiple 
absorptions and reflections to evaluate the heat gain or 
loss by the water [27T]. A passiveenergy collection and 
storage system for greenhouses, based on the collection 
ofenergy from the greenhouse atmosphere and storage 
in the ground, is investigated [19T]. 

A simple periodic analysis of a basin-type solar still 
(both single as well as double) quite satisfactorily 
explains the thermal performance [25T]. Precipitation 
in a ‘saturated’ solar pond can increase the reflectance 
of the bottom ofthe pond and this can reduce the width 
of the nonconvective zone and, thus, seriously degrade 
the performance of the pond [ 13T]. A new technique 
was devised to make quantitativeestimates ofthe value 
of the three major components of a solar-driven 
chemical heat pump [28T]. A second law efficiency 
analysis for solar water heaters was presented [IT]. 
Mounting heat-sink fins in a suitable funnel can 
contribute substantially to their effectiveness in cooling 
solar energy converters [4T]. 

PLASMA HEAT TRANSFER 

There is a continuing, strong interest in plasma heat 
transfer. A 2-dim. analysis of free convection in 
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horizontal, high pressure arcs consisting primarily of 
Hg vapor confined in quartz tubes, shows that the 
vertical location of the hot core is in good agreement 
with experimental findings [12U]. Similarity relations 
derived for electric arcsin forced axial flow indicate that 
a turbulent flow model is more consistent with 
experiments than a laminar flow model [ 16U]. Results 
of a two-temperature modeling of the anode 
contraction region ofa high intensity argon arc indicate 
that the temperature discrepancy between electrons 
and heavy particles is very pronounced in the arc fringes 
and the region close to the anode [3U]. A similar study 
of an arc plasma reactor indicates that enhanced Joule 
heating in the constricted arc path raises the electron, as 
well as the heavy-particle temperatures resisting the 
penetration of the cold gas into the hot arc core [2U]. 
Calculations of the heating mechanism of cathode 
craters in vacuum arcs show that Joule heating is 
insufficient to explain the short time scale of their 
formation. Therefore, ion impact heating is considered 
to be the dominant process [SU]. A sectioned, rotating 
cylinder of 10 cm diameter is used for measuring local 
heat fluxes and current densities at the anode of a 
stabilized, rotationally symmetric atmospheric pres- 
sure argon arc for currents from 100 to 500 A. The 
results indicate maximum current densities of 340 A 
cm ’ and heat fluxes up to 7 kW cm ~’ for the 500 A arc 

ClUl. 
The reduction and dephosphorization ofmolten iron 

oxide with hydrogenargon plasmas shows that the 
efficiency of hydrogen utilization for the reduction is 

much higher than predicted by equilibrium values 
:eiow 3000 K [14U]. Transition metal nitrides and 
alloys may be directly synthesized in a DC argon- 
nitrogen plasma from powders of the corresponding 
metals [ 17U]. Superconducting compounds such as 
cubic c(- MoC, ox, etc. which are metastable at room 
temperature have been formed by heating and 
quenchingofthecorrespondingequilibriumphasesin a 
plasma jet [ 11 U]. A reactive plasma zone melting 
process has been used for the purification of 
metallurgical grade silicon [13U]. Investigations of the 
heating of submicron particles (metals) in a thermal, 
optically thick plasma indicate that kinetic methods are 
required for calculating heating of the particles [ 1 SU]. 
A 100 kW three-phase plasma furnace has been used for 
spheroidization of aluminum silicate particles. A 
simple, l-dim. model for particle heat transfer explains 
the maximum processing rates and the detrimental 
effect of an inhomogeneous particle size distribution 
[7U]. A new sample injection method, incorporated 
into the design of a r.f. plasma torch, is capable of 
complete evaporation of refractory materials at high 
feedingrates without interfering with thestability ofthe 
plasma r2 I LJl. 

Transport properties of hydrogen, oxygen, and 
argon mixtures are calculated for a temperature range 
from 4000 up to 10000 K using the Chapman 
Enskog approach [ISU]. Studies of the total 
emission coefficient of an air plasma at temperatures 

from 17000 to 20000 K and pressures from 3 to 15 
MPa indicate that calculated data in the literature are 

224 times too high [SU]. 
Studies of the behavior of cold Langmuir probes 

immersed into a moving, compressible, high pressure 
plasma (MHD plasma) take the cooling-induced 
reduction of the local ion mobility and the distortion of 
the hydrodynamic flow pattern close to the probe into 
account [4U]. By measuring heat transfer rates from a 
rarefied argon plasma to a biased tungsten wire, 
accommodation coefficients of argon atoms were found 
to be 0.62 and for argon ions a value of 0.48 has been 
found [SU]. A new numerical method has been 
developed for determining local emission coefficients in 
asymmetric plasmas (extension of conventional Abel 
inversion) [2OU]. Results of laser-induced fluorescence 
measurements in high-pressure mercury, mercury- 
metal halide, and sodium-mercury arcs indicate that 
this method offers interesting possibilities for the 

determination of local particle density ratios, local 
spectral line shifts (Stark shifts) and transition 
probabilities [ ISU]. 

The heat flux along a uniform magnetic field due to a 
temperature gradient is calculated using a Monte- 
Carlo solution to the Fokker-Planck equation. The 
calculatedheat flux makesasmooth transition between 
the analytic expressions for the short and long mean- 
free-path limits [ lOU]. Small scale features (l&20 pm) 
in laser-produced plasmas may be influenced by an 
instability associated with the density dependence of 
radiative energy losses [SU]. 
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