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INTRODUCTION

Tris review surveys results that have been published in
the open literature covering various fields of heat
transfer during 1981, As in the past, the number of
papers published during that period was such that only
a selection can be included.

An Advanced Study Institute on “Low Reynolds
Forced Convection in Channels and Bundles” was held
at Ankara, Turkey, 13--24 July 1981. Nine sesstons dealt
with forced convection and heatexchanger technology.
Proceedings of the institute will be published by
Hemisphere Publishing Corporation, Washington,
DC.

The 20th Naticnal Heat Transfer Conference was
held at Milwaukee, Wisconsin, 2-5 Aungust 1981, and
was sponsored by the American Society of Mechanical
Engineers and the American Institute of Chemical
Engineers. Thirty-eight sessions were devoted to
various fields of fundamental and applied heat transfer,
including sessions on porous media and mathematical
modeling. Invited lectures were presented by G. F.
Hewitt on “Two-Phase Flow and its Applications:
Past, Present, and Future” and by R. A. Seban on
“Some Aspects of the Heat Transfer in Refloedingofa
Single Tube”. The Donald Q. Kern Award was
presented to (. F. Hewitt and the Max Jakob
Memorial Award to R. A. Seban, The papers presented
at the conference are available as preprints or in the
published series of the American Institute of Chemical
Engineers. Many will also be published in the Jowrnal of
Heat Transfer.

The Third Symposium on Turbulent Shear Flows
sponsored by the US. Air Foree Office of Scientific
Research, Research Offices of the U.S. Army and Navy,
and the National Science Foundation took place on 9~
11 September 1981 at the University of California,
Davis. One of the sessions wasdevoted to heat and mass
transfer in boundary layers and various papers in the
other sessions touched on heat transfer. A bound
symposium volume is available,

The International Centre for Heat and Mass
Transfer organized a Summer School on “Heat
Exchangers” {31 August-5 September 1981} and an
International Seminar on “Advancement i Heat
Exchangers” at Dubrovnik, Yugoslavia, 7-i2
September 1981, The Summer School was organized
around the Heat Exchange Design Book which is
published by Hemisphere Publishing Corporation in
five parts. Proceedings of the International Seminarare
also available through Hemisphere Publishing
Corporation.

The Second National‘Symposium on “Numerical

Methods in Heat Transfer” was sponsored by the
National Science Foundation, the Office of Naval
Research, and the University of Maryland and was held
at College Park, Maryland, 28-30 September 1981.
Twelve sessions dealt with finite difference and finite
element methods used in modeling heat transfer
processes. A short course for engineers and scientists on
“Computation of Heat Transfer and Fluid Flow™ was
held at the University of Minnesota, 16-19 November
1981.

The 102nd Winter Annual Meeting of the American
Society of Maechanical Engineers, held 15-20
November 1981 at Washington, D.C,, contained in its
program sixteen sessions on fundamental and applied
aspects of heat transfer. At the Heat Transfer
Luncheon, Frank Kreith gave a lecture on the topic “Is
There a Solar Future?”. Heat Transfer Memorial
Awardswere givento A. Cezairliyan, Kwang-Tzu Yang
and Ivan Catton. The papers presented af the
conference are available as preprints or in book form at
ASME Headquarters. Many of them will also be
published in the Journal of Heat Transfer.

A considerable number of books dealing with heat
transfer or including heat transfer topics have appeared
on the market. They are listed in the bibliographic
portion of this review. The Latin American Journal of
Heat and Mass Transfer is published in Argentina with
the Editorial Office at Avenida 1, No. 867, La Plata,
Argentina,

The foliowing highlights illuminate developments in
heat transfer research during 1981 :

In heat conduction, problems of phase change
appear to be the main focus of published work. Solution
methodologies, both numerical and analytical, also
continue to evoke interest.

Clomplex passages, as they occur in compact heat
exchangers, have been primarily investigated as
channel flow configurations. Laminar and turbulent
boundarylayers are of continuinginterest. Freejets and
flow across cylinders have also found attention,

Heat transfer in porous media and in fluidized beds
found much attention, probably since these processes
are not completely understood as yet. They are
investigated experimentally and analytically with
models simplifying the process. Studies on one-phase
heat transfer, as well as change of phase, and combined
heat and mass transfer are reported in the literature.

Porous media were also considered in natural
convection studies. Double diffusion processes were
under imvestigation. External natural convection
studies concentrated on flat plates in steady and
transient state. Some of the articles included the effects
of variable properties. Mixed convection over plates,
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cylinders, and spheres was the topic of several papers.

Processes in rotating flows have been studied which
led to a significant increase in heat transfer or to a
favorable ratio of heat transfer to pressure drop.

Heat transfer with change of phase remains an active
research topic. As in past years, the majority of the
papersin this category are nuclear reactor heat transfer
oriented. Present papers in the reactor heat transfer
subcategory discuss: bubble nucleation in a super-
heated liquid medium upon depressurization ; boiling
outside of sodium-heated tubes; heat transfer, CHF,
and bubble growth when liquid coolant comes in
contact with molten nuclear fuel ; heat transfer in falling
liquid films with rewetting and quenching ; and boiling
in a porous medium. Topics of papers on basic
phenomena of boiling and condensing include: the
details of bubble formation, growth and departure and
the microconvection associated with these processes ;
the effects of surface coatings, e.g. gold or plasma-
coated polymers; and the effects of surface prepar-
ations, e.g. nucleation pits. Several papers were
presented ondroplet evaporationinsuperheated vapor
or in a noncondensible gas.

Interest is still strong in studying the performance of
heat exchangers, whereas heat pipes have found little
attention the past year.

The largest number of papers on solar energy
continue to deal with the experimental and analytical
evaluation of the performance of flat plate solar
collectors. A significant number of publications
describe the thermal performance of passive solar heat
systems.

There is renewed interest in plasma heat transfer
associated with new developments in high temperature
plasma chemistry and plasma processing.

To facilitate the use of this review, a listing of the
subject headings is made below in the order in which
they appear in the text. The letter which appears
adjacent to each subject heading is also attached to the
references that are cited in that category:

Conduction, A
Channel flow, B
Boundary layer and external flows, C
Flow with separated regions, D
Natural convection—internal flows, F
Natural convection—external flows, FF
Convection from rotating surfaces, G
Combined heat and mass transfer, H
Change of phase, J
Radiation
Radiation in participating media, K
Surface radiation, L
MHD, M
Numerical methods, N
Heat transfer applications
Heat exchangers and heat pipes, Q
General, S
Solar energy, T
Plasma heat transfer, U.

E. R. G. ECKERT et al.

CONDUCTION

Problems of phase change appear to be the main
focus of the published work in heat conduction.
Solution methodologies, both numerical and
analytical, also continue to evoke interest.

In a method for immobilizing moving boundaries in
phase-change problems, a convection-like transport
appears in the governing equations due to the
coordinate transformation [22A]. By immobilizing the
moving boundary, the 2-dim. freezing on the outside of
a coolant-carrying tube was solved by a finite-
difference method [57A]. A closed-form solution has
been obtained for the 2-dim. freezing on a wall that is
convectively cooled from the rear [21A]. A simple
1-dim. model, which neglects the details of axial
variations, was employed to solve for melting about a
horizontal tube through which a hot fluid passes [48A].
When a heat-generating liquid layer, insulated at the
bottom, is cooled from above by contact with a cold
environment maintained at a fixed subfreezing
temperature, a frozen crust may be formed at the top. If
the top cooling is not strong enough, the crust may
grow and decay periodically [8A]. For melting about a
horizontal cylinder, short-time solutions (i.e. small
natural convection) were obtained by both an integral
method and a quasi-steady model [69A].

In an analysis of unidirectional freezing of aqueous
solutions during cooling at subzero temperatures,
under conditions where the solute is completely
rejected by the advancing ice front, the conventional
diffusion equation is invalid [32A]. The enthalpy
method has been reinterpreted to increase its accuracy
[63A]. In a companion paper, a modification of the
enthalpy method has been extended to cylindrical
problems containing a circular cross section and
spatially uniform boundary conditions [64A]. A
similarity rule which greatly simplifies the solution of
solidification problems has been extended to take
account of the volume change that accompanies the
phase change [51A]. A conformal transformation
method was applied for the determination of the shape
of the interface between a solidified layer formed on the
inside of a cooled pipe of rectangular cross sectionand a
warmer flowing liquid which passes along the axis of the
pipe [60A]. The freezing of a liquid passing through a
pipe with highly cooled walls may result in blockage of
the pipe [47A]. Numerical solutions for 2-dim.
solidification in a rectangular region have reaffirmed
the importance of accounting for natural convection in
the melt [45A].

A series solution of the Stefan problem with a
convectively heated surface has been formulated and is
purported to be exact [34A]. Series solutions have also
been constructed for the Stefan problem with
prescribed surface heat flux. A similarity solution is
possible if the heat flux varies as t~''2 [61A]. The
accuracy of approximate solutions for the uniform heat
flux boundary condition has been assessed [9A]. In the
Stefan problem, the magnitude of the Stefan number
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serves as a measure of the ratio of the sensible heat to the
latent heat [53A]. The analysis for the freeze-coating of
a continuous moving sheet differs from the standard
Stefan problem in that the frozen layer thickness varies
with the space coordinate along the moving sheet
rather than with time [S0A].

For calculating transient heat conduction in an
expanding solid, the governing energy equation can be
transformed to that for a fixed boundary problem
[24A]. Highly nonlinear steady and quasi-steady
conduction problems in simple geometries, including
the effect of material travel, can be solved effectively by
an iterative adaptation of the SEPELI fast elliptic
equation solver [43A]. A finite element algorithm was
used for the prediction of the rate of freezing of fresh
water for various boundary conditions [23A]. A Heat-
Balance-Integral solution for freezing about a circular
cylinder was applied to soil systems [35A].

In an applications-oriented study, a model was
developed for predicting the characteristics of an array
of phase-change cylinders arranged in crossflow with
respect to a transfer fluid [S4A]. A design-oriented
computation procedure for phase-change storage
yielded the melted fraction and the shape of the liquid~
solid interface [19A].

A number of experimental papers have dealt with
freezing and melting. For freezing on a finned vertical
tube, the heat transfer enhancement is proportional to
the fin area when there is strong natural convection in
the liquid melt [58A7]. Experiments demonstrated that
fins provided greater enhancement for melting than for
freezing [4A]. When a cooled surface is placed in a
superheated liquid, the freezing is initially strongly
affected by natural convection, but as the superheat
wanes, conduction in the frozen solid becomes the
dominant heat transfer mechanism [S9A7. Local and
average heat transfer rates at the ice—~water interface of
an ice layer grown on a circular cylinder were
determined directly from a photograph showing the
shape of the ice layer [7A]. In the melting of the vertical
surface of a solid by a heated liquid pool, the melt and
the external fluid did not intermix along their mutual
vertical interface despite the fact that the two media
were miscible [ 15A]. Inexperiments on meltingabouta
heated vertical cylinder, the measured heat transfer
coefficients were little affected by whether the upper
surface of the melt was subjected to a slip or no-slip
velocity boundary condition [27A].

Solutions for a variety of steady state conduction
problems have been published. Inresponse to problems
encountered in the cold-rolling of flat metal products,
steady state temperature distributions were determined
for a rotating roll subject to constant heat input over
one portion of the circumference and convective
cooling over another portion of the circumference
[42A]. In another steady state problem involving
complex boundary conditions, a solution was obtained
for the temperature distribution in the wall of a tube
which is in contact with the wall of a larger tube over
part of its circumference [1A]. Numerical values of the
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conduction shape factor have been determined for
multi-hole prismatic bars [39A]. A simple rule is
presented for conduction shape factors for bodies with
a geometrical axis of symmetry and with boundaries
that are maintained at one of two uniform temperatures
orareinsulated [33A7. Conduction fromsurfaces to the
3-dim. surrounding space is relevant as a limiting case
for natural and lorced convection, respectively, as the
Rayleigh and Reynolds numbers approach zero [10A].
To analyze heat conduction in spheres packed in an
infinite regular cubical array, a unit cube with a sphere
at the center was selected as the typical module [13A].
An analytical model for the computation of steady
conduction across rectangular-celled enclosures is
based on the assumption of quasi-1-dim. conduction in
the cell partitions [ 14A]. Classical series methods are
employed to solve steady conduction problems in r,z
cylindrical coordinates for boundary conditions
appropriate to nuclear reactor fuel pins [67A]. A wire
heated by ohmic dissipation can, under certain
conditions, have multiple steady states. The sufficient
conditions for a unique steady state have been
identified [40A].

Fins continue to evoke interest. Numerical solutions
of the momentum equation for the fluid and the energy
equations for the fluid and the solid yielded local heat
transfer coefficients along the principal faces and the
tips of an array of rectangular fins. The averaged tip
coefficients were not markedly different from those of a
segment of the principal face adjacent to the tip [56A].
Inthe presence of condensation on arectangular fin, the
optimum fin length is smaller than for the case of no
condensation [29A]. The optimum efficiency for a
cylindrical pin fin is higher than that for the
longitudinal rectangular fin [55A]. The effect of a
timewise periodic variation of the base temperature ofa
radiating fin is to increase the mean heat transfer rate
[2A]. Inacompanion paper, the analysis is extended to
temperature-dependent thermal conductivity and to
spatially varying heat transfer coefficient [3A7]. The
standard assumption of a uniform fin heat transfer
coefficient was lifted in favor of a linearly varying
coefficient from base to tip [18A]. A technique for
analyzing an array of extended surfaces is based on
principles of graph theory, employing a novel kind of
incidence matrix [S2A].

Some interest persists in anisotropic materials,
composites, and variable properties. By the use of a
numerical mapping technique, steady state heat
conduction solutions for anisotropic composites of
arbitrary shape have been obtained [44A7. The finite
integral transform technique has been generalized to
solve transient heat conduction in a 3-dim. anisotropic
medium [37A]. In determining the thermal con-
ductivities of fibrous composites, an analytical model is
employed whereby the fibers are considered to be
uniformly dispersed in a matrix of resin [1 7A7]. To deal
with temperature-dependent thermal conductivity in
1-dim. transient conduction problems, it is proposed to
replace the nonlinear heat equation with a linear
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version which contains a pseudo heat generation term
[25A].

Aspects of contact have been investigated. The
problem of the transient response of two semi-infinite
solids not making perfect contact is treated by modeling
the interface as a series of equally spaced strips making
perfect contact, with the remaining area assumed to be
perfectly insulating [46A]. I an elastic half plane is
indented by a perfectly conducting rigid flat punch
which is at a different temperature from the half plane,
the nature of the contact depends on the magnitude and
direction of the heat flow [11A]. The basic nature of the
planar Hertz contact problem differs depending on
whether heat flows into the material with the larger
distortivity or vice versa [12A]. The finite integral
transform technique was used to obtain a quasi-steady
solution for two finite periodically contacting regions,
with imperfect thermal contact at the interface [62A].

Various specific problems of transient conduction
were solved. The solution for the transient temperature
field in a sphere with single-sided heating modeled a
problem in magnetic thermonuclear reactor engineer-
ing [66A]. Transient heat flow from a disk into a half-
space when the disk temperature undergoes a step
change was investigated by a separation of variables
technique using oblate spheroidal coordinates [36A].
A series solution is presented for the transient
temperature response of a semi-infinite cylinder to a
step change in heat flux at a disk centered in the end face
of the cylinder [5A]. In a related paper, large time
solutions are obtained for a semi-infinite body heated
over a circular region on its exposed face [6A]. In a
transient technique for measuring thermal conduc-
tivity, the ramp function offers advantages over the step
and Dirac functions [38A]. A correction for heat
conduction between a sensor wire and its supports
should be made to attain high accuracy [30A].

In addition to the solution methodologies described
in the foregoing papers, several other methodology-
related papers have been published. The advantages of
using body-fitted coordinates as the basis for the
numerical solution of heat conduction problems was
illustrated by a range of examples [ 16A]. The unsteady
surface element method is an approach for determining
the temperature and heat flow at the interface between
contacting, conducting solids [26A]. A finite element
procedure for unsteady conduction-has been developed
which utilizes conjugate base functions and a modified
form of the secant method for solving the discretized
equations [49A]. The main advantage of the boundary
element method for solving transient heat conduction
problems is the reduction by one of the dimensionality
of the problem [68A]. A numerical method for steady
heat conduction, the iterative boundary integral
method,is purported to have no limitations with regard
to geometric complexity, type of boundary condition,
or thermal conductivity [28A]. Using a conformal
transformation which maps the region of interest onto
the upper half plane, the Heat Balance Integral is
generalized to 2-dim. transient heat conduction [70A].
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For situations with moving temperature fields (e.g.
metal forming, welding, plastic processing), moving
finite elements were found to be advantageous as the
basis of a numerical solution [41A]. An electrical
analogue for solving conduction problems with moving
heat sources on the surface yielded good agreement
with solutions in Carslow and Jaeger [31A].

The inverse problem of transient heat conduction
was shown to be ill-posed, as the solution exhibits
unstable dependence on the given data functions
[65A]. As a variant of the inverse problem, a method 1s
described for predicting the geometry of a cavity
situated beneath a surface whose temperature is known
(for example, by infrared scanning) [20A].

CHANNEL FLOW

Experimental and theoretical work has been
reported for the fluid flow and heat transfer processes in
channels of both simple and complex geometry.

Among the studies associated with circular pipes, the
heat transfer to liquid metals in laminar and turbulent
flow has been dealt with [6B]. The situation with drag-
reducing non-Newtonian fluids has been considered
[41B]. Ref. [20B] deals with heat transfer to
pseudoplastic fluids, while [7B] describes mass transfer
to viscoelastic fluids. The dispersion from a line source
in a turbulent flow is handled in [ 13B]. An analysis has
been done for the unsteady heat transfer to power-law
fluids [25B]. The effect of cross flow at the entrance on
the heat transfer in tubes has been investigated [31B].
Ref. [15B] deals with ice formation in a pipe containing
flows in transition and turbulent regimes. Mechanical
heating of non-Newtonian fluids has been discussed
[12B]. The gun barrel wall heat transfer has been
analyzed [1B].

Ref. [35B] deals with the heat transfer in a capillary
flow. Fluidized bed heat transfer to asingle vertical tube
has been discussed [8B]. Entry lengths for heat and
mass transfer to power-law fluids have been determined
[47B]. Ref. [46B] presents a simple solution for heat
transfer to a power-law fluid flowing in a pipe.
Convection velocities have been determined for a
turbulent pipe flow [30B]. Simultaneous diffusion and
convection in laminar tube flow has been studied
[51B]. Ref. [32B] deals with heat transfer in profiled
tubes.

Axial conduction in the fluid and the solid walls of the
channel plays an important role in some cases. Axial
conduction is included in the analysis of laminar flow in
a circular tube [4B, 33B]. The conjugate convective
heat transfer is considered for viscoplastic fluids [40B].
The flow in a circular tube is analyzed with the effect of
axial conduction [48B, 49B].

A numerical solution has been obtained for the heat
transfer between concentric vibrating cylinders [17B].
The flow and heat transfer in rectangular cavities has
been solved by a numerical scheme [24B]. Ref. [9B]
deals with 3-dim. laminar flow in ducts. The entrance
region of a flat plate duct has been analyzed [37B]. An
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analysis is presented for flow and heat transfer in rod
bundles [ 50B]. Heat transfer in a converging channel is
considered [10B]. Ref. [21B] deals with multicom-
ponent mass transfer in turbulent flow, Nucleation and
bubble growth has been discussed for immiscible liquid
composites [18B]. Laminar flow heat transfer in
triangular passages has been investigated [38B].

Critical heat flux in horizontal channels has been
experimentally measured [23B]. The response of a
turbulent boundary layer to a sudden decrease in wall
heat flux has been studied [45B]. Experimental data are
reported for heat transfer at an upstream facing surface
of an aperture [43B]. A numerical solution has been
obtained forinterrupted-plate passages with finite plate
thickness [36B]. Experimentally determined heat
transfer coefficients are given for a tube downstream of
a cylindrical plenum [22B]. Friction factors in
internally finned channels are analytically predicted
[39B]. Ref. [2B] considers heat transfer in a channel at
supercritical pressure.

An analysis has been reported for flow in twisted
pipes [27B]; a related paper deals with heat transfer in
the same situation [28B]. Turbulence models have
been examined for ducts of annular cross section [26B].
Measurements are reported for the pressure drop in
shrouded fin array with tip clearance [42B]. A study of
flow and heat transfer in corrugated wall channels has
been presented [19B]. Heat transfer is studied for a
parallel-plate channel containing a cylinder [34B]. Ref.
[3B7 deals with heat transfer to pseudo-plastic fluids.
The use of mass transfer method for heat transfer is
discussed in [29B7]. Experimental data for turbulized
channels are correlated by the use of a turbulence model
[14B]. The Rayleigh—Ritz method has been applied to
forced convection [11B]. Laminar heat transfer in a
duct has been considered with temperature-dependent
properties [16B]. Ref. [5B] deals with the effect of
mounting systems on heat transfer from inclined
cylinders. The flow and heat transfer around a blockage
in a duct have been considered [44B].

BOUNDARY LAYER AND EXTERNAL FLOWS

Most papers in the area of boundary layers are
concerned with laminar and turbulent boundary layers
on flat surfaces. Work has also been reported on
turbulent jets, impingement flows, and flows over
cylinders and spheres.

An integral method has been applied to the
calculation of heat transfer in a turbulent incom-
pressible boundary layer [32C]. The effect of a
favorable pressure gradient on the heat transfer to a
rough surface has been considered [6C]. A study is
reported for effect of the Reynolds number on the
turbulence structure of a slightly heated turbulent
boundary layer [29C]. The combined free and forced
convection on a vertical surface has been investigated
{8C]. Boundary layers on turbine blades at different
angles of attack have been studied [38C]. Ref. [23C]
describes the shear stress and heat transfer charac-
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teristics at an infinite swept attachment line. The
unsteady turbulent heat transfer from a flat plate has
been investigated experimentally [12C] and numeri-
cally [13C]. The influence of adiabatic co-planar
extension surfaces on the solar-collector heat transfer
coefficients has been described [27C]. An experimental
investigation of heat-stabilized laminar boundary
layers in water has been reported [ 5C]. The influence of
a density interface on a boundary layer has been
discussed [21C]. A study has been reported on the
forced convection near laminar separation [2C].
Laminar heat transfer has been investigated for the
situation in which heat is transferred from a flat surface
to a 2-dim. water jet [15C].

Among the studies related to free jets, the turbulent
convective velocities in a plane jet have been measured
[11C]. The structure of a slightly heated turbulent
mixing layer has been studied [24C]. An experimental
and theoretical investigation has been reported for a
2-dim. turbulent jet [14C]. An analysis of a laminar
isothermal two-phase jet appears in [9C]. The interface
heat transfer in a horizontal co-current stratified flow
has been described [30C]. The complex flow and heat
transfer phenomena arising from the impingement of a
jet array with cross flow have been discussed [10C].

The flow and heat transfer at the axisymmetric
stagnation region has been calculated [22C].
Experimentally determined heat transfer coefficients
on a wall-attached cylinder are reported [28C].
Reference [1C] deals with the heat transfer in a tube
bank. Laminar falling film characteristics have been
determined for horizontal tubes [26C]. Heat transfer
due to flow over rectangular bodies has been
considered [31C]. Flow and heat transfer around a
sphere has been discussed in a number of papers [ 18C,
35C, 34C, 1C1.

Among studies concerned with time-dependent
situations, a thermal boundary layer is considered
[16C]. The temperature fluctuations in liquid-metal
systems are analyzed [20C]. In a non-Newtonian flow,
the unsteady thermal boundary layer is analyzed
[25C]. Approximate convective heating equations
have been proposed for hypersonic flows [37C].

Among the measurement and analysis of turbulence
properties, the following topics have been investigated :
decay of turbulence behind a grid [36C], turbulent
scalar fields [17C], turbulent bursts leading to a
prediction for turbulent Prandt! number [33C], origin
of turbulence [4C], and transitional turbulent spot
[3C]. The intrinsic scales in thermohydrogasdynamics
have been identified [19C].

FLOW WITH SEPARATED REGIONS
AND THROUGH POROUS MEDIA

Separated regions

Heat transfer was investigated from cylinders in
unsteady flow [2D] and in high temperature
surroundings [15D]. Experiments studied also heat
transfer between a heated cylinder and an air stream
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with a water spray for steady and pulsating flow [3D].
An expression was derived [10D] for stagnation point
heat transfer from a row of impinging jets to a concave
cylinder surface. Similarity was verified for models
scaled up by a factor of 10. A numerical 2-dim. analysis
[6D]studied the low and heat transfer in a rectangular
cavity where the flow is starting from rest with some
fluid entering at the upper left hand corner and leaving
the cavity in the lower right hand corner.

Porous media

A numerical analysis [ 17D] studies the velocity and
temperature field in a porous medium near an
impermeable boundary. Flow and heat transfer are
determined by three dimensionless parameters and the
results reveal that errors occur when calculations are
based on Darcy’slaw. Convection in a porous layer was
also analyzed [5D] by integral relations at high
Rayleigh number and for a fluid with temperature
dependent viscosity. Mass transfer caused by natural
convection in a porous medium consisting of packed
spheres and screens was measured [7D] by the
electrochemical method. The results were described by
the following equation

Sh = 0.0228(Sc Gr)°2(Ry/d,)*-**

with d denoting the particle diameter and R, the
hydraulic radius of the flow cross section. Natural
convection heat transfer was studied [4D] for a vertical
impermeable partition between two porous media
maintained at different temperatures. The results show
thatsuch a separation inserted in the middle of a porous
slab reduces heat transfer drastically. Experiments on
boiling heat transfer in porous wire mesh structures
[14D] resulted in dimensionless expressions for the
heat transfer coefficient.

Three papers deal with combined heat and moisture
transfer in unsaturated porous media. The transfer
processes in soil (loam and sand) surrounding a buried
spherical heat source was studied [ 1 D] analytically and
experimentally. A rigorous solution describes the
dynamicresponse ofa porous medium or packed bed to
an arbitrary varying inlet temperature using a two
phase model [16D] and a steady state 1-dim. analysis
[13D] considers condensation in a porous insulation
occurring when the two surfaces are exposed to two
different humid environments. Convective and
diffusive transport as well as phase change are included.

Fluidized beds

Heat transfer to the particles of a fluidized bed is
measured [ 11D] for the situation where small particles
pass down through the bed of larger and heavier
particles. Heat transfer is found to depend primarily on
the particle residence time. An analysis of thermal
dispersion and particle to fluid heat transfer [8D]
considers small particles fluidized in the voids between
larger stationary particles. Experiments on the
maximum heat transfer coefficient between an
electrically heated horizontal tube and a gas-solid
fluidized bed with glass, dolomite, sand, silicon carbide,
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and alumina particles revealed that none of presently
available correlations agree with the experimental
results [9D]. New correlations are therefore proposed.
Heat transfer between a fluidized bed of spherical and
non-spherical particles with 2-3 mm size and immersed
in-line and staggered bundles of horizontal tubes was
measured at atmospheric temperature and pressure
[19D]. Results were found to agree with Zabrodsky’s
theory for wide tube spacing. Heat transfer was also
measured [18D] in fixed and fluidized beds through
whichaliquid is flowing. Mass and momentum transfer
to Newtonian and non-Newtonian fluids (water and
cellulose CMC solution) was measured in fixed and
fluidized beds of uniform cylindrical pellets and spheres
for Re from 0.038 to 6000 and Sc from 800 to 72 000
[12D].

NATURAL CONVECTION—INTERNAL FLOWS

Natural convection in enclosures continues to be of
interest to many investigators. As has been true for
some years, many papers relate either to convection in
fluid layers heated from below or to flow in
differentially-heated cavities that are generally heated
onone vertical surface and cooled on another. This year
there appears to be greater interest in heat transfer
across shallow layers of fluid. The areas showing the
largest increase in relative activity appear to be: (1)
research concerned with thermohaline or double-
diffusive convection, i.e. buoyancy forces due to
differences in composition or concentration as well as
variations in temperature; and (2) natural convection
flow in porous media-—many of these flows are of
interest in geophysical phenomena as well as of im-
portance to the fundamentals of fluid mechanics and
heat transfer.

A number of studies considered special solutions for
the flow and heat transfer in a horizontal layer heated
from below. Boundary layer solutions are reported for
non-linear thermal convection in a horizontal layer
heated from below with stress free upper and lower
boundaries [54F]. Steady numerical solutions in the
form of 2-dim. rolls are found [ 15F] for convectionin a
low Prandtl number fluid ;in acompanion work [10F],
an asymptotic model is described which agrees well
with these numerical results. With poorly-conducting
surfaces as the upper and lower boundaries, square cells
are obtained as contrasted to the rolls found for
conducting boundaries [50F]. Differences between
buoyancy-driven and surface tension-driven stability
in a horizontal layer has been studied in terms of the
significance of the critical parameters [57F].

Other studies of buoyancy-driven flows in fluid
layers heated from below include the influence of side-
wall geometry. A numerical study of the post-stability
flow pattern in a rectangular box has been presented
[45F]. Growth rate calculations have been performed
for flow in a cylindrical cavity [62F]. Measurements of
the effect of temperature-dependent properties on low
Rayleigh number thermal convection in a cylindrical



Heat transfer—a review of the 1981 literature

cell show hystresis [ 73F]. Analysis on a fluid contained
in a vertical cylinder with a free surface shows the
relative importance of surface-tension-driven and
buoyancy-driven phenomena [72F].

Experiments were reported on convection in a layer
of a nematic liquid crystal which is heated from below
[19F]. With this material there is a liquid-liquid phase
change. A numerical study indicates the onset of
thermal instability in a nematic liquid crystal heated
from below [3F].

An analysis of convection in a Hele-Shaw cell shows
that dissipation effects reduce the heat transfer [36F7].
Theeffect of heat and mass transfer on Rayleigh-Taylor
instability with a heavy fluid over a lighter one was
analyzed [29F7].

Many studies look at the natural convection from
one surface completely enclosed within another with
the fluid filling the space in between them. An example
would be convection in the annulus between two
cylinders maintained at different temperatures. A
numerical analysis of the laminar convection between
concentric and eccentric cylinders indicates an increase
in Nusselt number when the center of the inner cylinder
is below the center of the outer one [51F].
Electrochemical measurements are correlated by a
power law variation of Sherwood number with
Rayleigh number up to Rayleigh numbers greater than
10'° [60F ). Natural convection in the region between
two concentric spheres was analyzed with a constant
temperature or heat flux inner sphere boundary and
with the outer sphere at variable temperature tending
to give a stratified fluid layer [64F]. For an array of
cylinders in a cubic enclosure, experiments indicate a
higher heat transfer when the cylinders are horizontal
as compared to when they are vertical [74F]. A
procedure for fast numerical finite difference calcu-
lations has been developed and applied to predict the
convection between spheres and cylinders [34F].

Several studies consider the natural convection in a
vertical layer which is differentially heated by having
one vertical wall at a different temperature from the
opposite wall. Some numerical calculations of the heat
transfer across vertical layers are said to be invalid
outside a limited range of parameters due to points of
instability [53F]. Other studies on differentially-heated
vertical layers include constant heat flux boundary
conditions [17F], non-uniform surface temperatures
[20F] and the influence of Prandtl number over a large
range of Rayleigh number [21F]. Extrapolation of
finite-difference results for such flows can be made to
zero grid size using only two different grid sizes
[14F]. Experiments in vertical layers indicate single
2-dim. cells at low Rayleigh numbers and more com-
plex flow at higher Rayleigh numbers [66F].
Calculations show the potential convection in the
entrance region of a vertical concentric annulus [18F].
Transient convection in a vertical layer of water is
analyzed to include the influence of maximum density
point [56F].

Other studies of heat transfer in enclosures which are
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differentially heated on the sides, i.e. on the two vertical
faces of arectangular enclosure, include interferometric
measurements in a shallow horizontal layer [61F],
experiments up to high Rayleigh number [7F], and the
effects of a vertical partition which partially obstructs
the flow in a horizontal layer [43F]. A study on laminar
high Rayleigh number convection in a shallow
differentially heated layer found a power law variation
of Nusselt number with Rayleigh number with the
exponent decreasing with increasing Rayleigh number
[63F]. Numerical calculations provide correlations for
the heat transfer across a shallow rectangular cavity
[33F]. Different solutions were obtained for the heat
transfer across a shallow layer of low Prandtl number
and high Prandtl number fluids [65F].

Using a thymol-blue technique, counterflow was
observed in a horizontal cylinder connecting two fluid
reservoirs maintained at different temperatures [9F].
An experimental and theoretical study considered the
flow within a cavity extending from a reservoir [8F].
Penetration depth into an open cavity due to natural
convection has been examined [2F]. An analytical and
experimental study examined the flow in a shallow
layer cooled from above with some fluid entering and
leaving at one of the side boundaries [68F].

The natural convection in two separate chambers
thermally connected by a wall of finite conductivity has
been examined experimentally and analytically [71F].
Flow in an internal cavity connected thermally to a
natural convection boundary layer on one of its outside
walls has been examined [67F].

Natural convection has also been studied in inclined
fluid layers. A power integral analysis [59F] indicates
the parameters for instability and also shows the post-
stability flow in both inclined and vertical layers. In an
inclined plane air layer, the flow structure has been
visualized over a range of inclinations and Rayleigh
numbers [38F]. Analysis and experiments have been
used in a study of the flow structure in an inclined
annulus heated and cooled on its end plates [46F]. The
influence of thermal resistance of wall boundaries on
the onset of cellular convection in an inclined channel
has been examined [23F].

Several studies consider double-diffusive convection
in which the buoyancy forces that initiate and maintain
the convection are due to both temperature variations
and concentration variations in the fluid. A review
[31F] of double-diffusive convection illustrates some
important applications in astrophysics, engineering,
and geology. An analysis of 2-dim. double-diffusive
convection shows a transition between oscillatory and
steady motion [16F]. An experimental study shows cell
formation with a vertical concentration gradient when
heated from the side [44F].

The criteria for stability of a thermohaline flow in
horizontal layers of finite extent has been analyzed
[48F]. Instability well below the Rayleigh number
predicted by linear theories was found for thermo
haline convection [52F7]. The instability of salt-fingers
in convection has been analyzed over a wide range of
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relative mass and thermal diffusivities [28F]. Under
some conditions, three Rayleigh numbers are required
to predict the stability of a rotating double-diffusive
flow [47F].

As mentioned in the introduction, many papers
report on natural convection in porous media. The 2-
dim. convection pattern has been calculated in a region
made up of two or three different layers heated from
below [41F]. A general model for the stability of flowin
a stratified porous layer has been proposed [55F]. The
effect of geometry on critical Rayleigh number in
convective modes for flow in an open fluid saturated
box have been estimated [69F]. A finite element
analysis predicts the flow in a porous layer heated
differentially on the sides [25F]. A boundary layer
analysis and experiments are compared for convection
in a vertical porous layer differentially heated [40F].
The onset of flow as well as the preferred modes of flow
in a permeable medium contained between vertical
coaxial cylinders and heated from below have been
calculated [4F ]

Experiments on non-Darcy convection in a
saturated porous medivm show that earlier analyses
overestimate the bheat transfer rate [13F]. The
importance of dissipation effects in such flows has been
demonstrated analytically [12F}.

Transient analyses have been performed for several
geometries and boundary conditions with natural
convection in a porous layer. An experimental and
analytical study for a vertical layer heated differentially
includes the effect of the difference in temperature
between the liquid and solid [32F]. An analysis for
individual localized heat sources has been generalized
by superposition to get the effect of multiple heat
sources [24F]. A simplified analysis of 3-dim. fow
inchudes the influence of the heat transfer between the
fluid and the solid matrix [11F]. The lateral motion of a
flow into a saturated porous medium heated from one
side has been analyzed [6F].

Analytical techniques have been developed to find
the onset of thermohaline convection in a porous
medium with properties varying significantly in the
vertical direction [58F], Other papers on double-
diffusive convection in a porous medium include an
analysis of the formation of the convecting layer [22F,
and astudy of the flow in a vertical layer heated from the
side [35F].

Experiments on thermal convection in a differen-
tially heated rotating annulus include the influence of a
non-axisymmetric bottom surface [37F]. Depending
on the input parameters, different flow regimes are
observed in a rotating annulus with a variable bottom
surface temperature [27F ]

The transient and steady state flow in a toroidal
thermosyphon heated from below and cooled from
above has been examined including the influence of
fluid addition [42F]. Experiments and analysis on the
starting transient in an open loop heated from below
and centrally has been examined [5F]. A study [76F]
has considered the flow in a natural circulation system
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with parallel foops as might be used in the cooling of a
light water nuclear reactor.

Several studies consider mixed convection {ie.
combined natural and convection) in ducts. The key
parameter in correlating the bulk temperature rise with
mixed convection in horizontal tubes is found to be the
Rayleigh number raised to the 1/4th power divided by
the Graetz number [26F]. An interferometer has been
used to measure the mean temperature distribution
along a horizontal isothermal tube with internal mixed
convection [75F], The effect of buovancy on forced
convection inside a vertical tube with radial internal
fins has been analyzed numerically [49F]. Mixed
convection in a square cavity in a channel wall with
varying inclination has been examined [30F]. The flow
pattern of mixed convection in a shrouded fin array
depends on the relative temperatures of the fins and
fluid surrounding them [1F].

The Galerkin method has been used to calculate
natural convection in several arrays of vertical rod
bundles {39F7]. An orthogonal curvilinear coordinate
system has been used for finite difference solutions of
natural convection in non-rectangular enclosures
[70F],

NATURAL CONVECTION—EXTERNAL FLOWS

Results of an experimental study of natural
convection from a downward facing horizontal heated
plate were reported and an explanation and correlation
of the edge effects was made in terms of displacing the
origin of a boundary layer solution [18FF]. The
technique of live-fringe holographic interferometry has
been used in an investigation of convective heat transfer
beneath a heated horizontal plate in air [13FF]
Boundary layer flow of a thermomicroplar fluid past a
non-isothermal wvertical plate has been studied
numerically [19FF]. For the class of natural
convection flows on inclined surfaces in which inertial
effects are unimportant (including flows at high Prandtl
number} 2 local nonsimilarity analysis indicates that
the effects of the surface-normal pressure gradient on
the temperature profile can be characterized by a single
local configuration parameter [25FF]. Two-
dimensional buoyant clouds moving along inclined
boundaries were investigated theoretically and
experimentally and it was found that the “thermal
theory” gives a good description of the flow in the slope
angle range between approximately Sand 90° [4FF]. A
conjugate conduction—convection analysis has been
made for a vertical plate fin which exchanges heat with
its fluid environment by natural convection using a
first-principles approach [29FF .

Transient natural convection adjacent to a vertical
plate of finite thickness and heat capactty has been
analyzed [26FF). An investigation was conducted of
the transient heat transfer from electrically heated
conductors placed in cryogenic liquids [1FF1

Steady-state heat transfer from spheres and cylindesrs
was the subject of several papers. A numerical analysis
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was carried out to describe the thick boundary layer
around an isothermal sphere [14FF]. A study was
made of steady state convection from a solid sphere to
an incompressible Newtonian fluid with a Prandtl
number of 0.72 for Grashhof numbers varying from
0.05 to 50 [15FF]. Numerical predictions of the flow
patterns and heat transfer characteristics for laminar,
steady-state, 2-dim. natural convection around a
cylinder submerged in an unbounded Boussinesq fluid
are in good agreement with previously obtained
experimental data [12FF]. Experimental determin-
ations were made of the heat transfer from circular
cylinders as the cylinders were varied from horizontal
to vertical [33FF]. A series solution method for
laminar free convection boundary layer heat transfer
over circular and elliptical cylinders has been extended
to the treatment of nonisothermal objects [21FF]. Ina
study of the effects of vibrations on convection from
horizontal cylinders, it was observed that for amplitude
to diameter ratios exceeding 0.5, the relative vibrational
heat-transfer coefficient increased almost linearly with
the former irrespective of the frequency of vibration
[10FF]. Experiments were performed to investigate the
heat transfer characteristics of a short isothermal
horizontal cylinder attached to an equi-temperature
vertical plate and the Nusselt number was found to be
rather insensitive to the cylinder length and the position
of the cylinder along the plate [30FF]. Experiments
were carried out on heat and mass transfer from air to
horizontal tubes in the range 10%-10° for GrPr and
GrSc in order to investigate the analogy between heat
and mass transfer and the effect of mass transfer on the
mechanism of sensible heat transfer [11FF].

Experiments were performed to study the interactive
natural convection from a pair of heated horizontal
cylinders situated one above the other in a vertical
plane [31FF]. Numerical solutions have been obtained
for the upper-plate heat transfer response to a lateral
offset of the plate from a position of precise alignment
with a lower plate [32FF].

The temperature field of an axisymmetric laminar
starting plume was measured for the first time using an
interferometric measurement technique and Abel
inversion data reduction [28FF7]. The steady laminar
plume above a horizontal laser beam, which is caused
by absorption of thermal energy from the beam, was
found to be 3-dim. [6FF]. An integral method was
applied to the analysis of plume flow [17FF]. Round
buoyant laminar and turbulent plumes in unstratified
flow were analyzed [39FF]. The height to which dense
vertical jets with two opposing buoyancy components
rise was determined experimentally [34FF].

A study of the influences of property variations in
natural convection from vertical surfaces showed that
variable properties cause dramatic increases in heat
transfer rates in the turbulent regime but have virtually
no influence in the laminar regime [9FF]. A reference
temperature method was developed by which heat
transfer to fluids in the supercritical region under
variable property conditions in laminar free convection
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on a vertical flat plate can be evaluated readily and
accurately [16FF]. Plumes above line and point
sources in pure and saline water have been analyzed,
including the effects of nonlinear density variations
[23FF]. A 2-dim. finite difference analysis has predicted
the laminar flow and heat transfer characteristics for a
vertical ice sheet at 0°C melting into fresh water by free
convection under steady state conditions [37FF].
Time-exposure photographs are used to document the
nature of the natural convection flow adjacent to a
vertical ice surface melting in pure water at ambient
water temperatures between 3.9 and 8.4°C [7FF].

The problem of mixed convection from a 2-dim. line
heat source for both favorable and adverse buoyancy
effects with respect to an oncoming vertical stream is
analyzed in terms of two coordinate expansions, direct
and inverse, valid for small and large streamwise
distances from the heat source [2FF]. A buoyancy-
extended version of the k-¢ turbulence model is
described which predicts well the main features of
turbulent buoyant wall jets [22FF]. Experimental
determinations were made of the local heat transfer
rates of an electrically heated, vertical flat surface with
combined free and forced convection of air in the same
direction for the case of constant wall heat flux [3FF].
The cooling of a low-heat-resistance sheet that moves
downwards at a velocity much smaller than the natural
convection velocities that occur was analyzed [20FF].
The vortex instability of laminar, mixed-convection
flow over an isothermal, horizontal flat-plate was
investigated analytically using the linear stability
theory [24FF7]. The free-convection boundary layer
along a partially heated infinitely long vertical cylinder
disturbed by a steady horizontal flow was studied and
the asymptotic solution indicates that the boundary
layer is mainly induced by the buoyancy force near the
thermal leading edge [38FF]. In a heat transfer and
flow visualization investigation performed for a single
cylinder and for single and double rows of cylinders
submerged in an open channel flow, the regimes
associated with free convection, combined convection
and forced convection have been delineated [SFF].Ina
pair of companion papers, nonlinear 2-dim. magneto-
convection in a Boussinesq fluid has been studied in a
series of numerical experiments both for the regime in
which the development of nonlinear convection
develops and for the dynamical regime that follows
[35FF, 36FF]. Real-time holographic interferometry
has been used to study the convective heat transport in
a flat-plate solar collector [8FF]. Models of leaves and
plants were used to study heat and mass transfer
problems in agriculture, using an electrochemical
technique [27FF].

CONVECTION FROM ROTATING SURFACES

Experiments and theory determined mass transfer to
rotating disks and rings in laminar, transition, and
developed turbulent flow [3G] on different portions of
the surface. Measurements of heat transfer and friction
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lossinlaminar radial flow through a stack of disks [4G7
determined that centrifugal and Coriolis forces caused
by rotation lead to asignificant increase in heat transfer
with simultaneous reduction in friction. The effect of
impingement to increase heat transfer in condensation
on a rotating disk was found [7G] to be larger
experimentally than can be accounted for analytically.
Naphthalene sublimation was used to measure mass
transfer [2G] from a rotating inclined plate. The results
revealed a tremendous increase in the transfer rate
where the surface is exposed to wake flow. Computer
results are presented [1G] for developing laminar free
convection in an open ended vertical annulus with a
rotating inner cylinder. The Prandtl number is 0.7, the
radius ratio 0.5, one wall is isothermal and the other
adiabatic. The Taylor stability problem was solved
[5G] for a narrow gap between a hot rotating inner
cylinder and a cool stationary one. The energy
separation in vortex tubes can be increased [6G] when
the tube is conical with a small opening angle. The
length of the tube is also decreased.

COMBINED HEAT AND MASS TRANSFER

Combined heat and mass transfer is important in
such diverse applications as cooling of high-
temperature gas turbines, chemical processing, heat
transferin soils, and drying of paper. Many of the recent
studies, motivated by a specific application, have even
broader significance in terms of adding to our
understanding of fluid mechanics and convective
transport.

A numerical prediction of the film cooling
effectiveness for discrete hole injection compares
favorably with experimental results at low injection
rates [2H]. The effects of heat transfer in porous layers
as might occur on transpiration-cooled turbine blades
has been analyzed; this work includes the effect of
surface curvature [8H].

The influence of the injection normal to a surface on
external mass transfer has been analyzed {3H]. The
Nusselt number distribution along a channel with
surface injection or suction has been calculated [13H].

A number of analyses consider transient heat and
mass transfer where there is either a sudden or gradual
change in a boundary condition such as wall
temperature. Theinfluence of blowing or suction on the
heat transfer in the forward stagnation region of a body
following a step change in wall temperature or heat flux
has been examined [7H]. A finite difference analysis
considers buoyancy-driven convection due to concen-
tration and temperature variation on an isothermal
vertical flat plate [10H]. An analysis considers the
drying near a cylindrical heat source embedded in a
moist porous media [ SH]. Another study on transient
convection combines analysis and measurements of
coupled heat and mass transfer in an unsaturated
porous media [4H]. The thickness of a frost layeron a
cold surface over which a humid stream flows increases
with time raised to the one-half power [12H].
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Combined heat and mass transfer has been examined
using laminar boundary layer analysis [6H]. A film
model was developed to analyze coupled heat and mass
transfer in multi-component systems [11H]. The
relative importance of thermal diffusion and diffusion
thermo effects have been examined for different
boundary conditions of wall temperature and free
stream concentration [ {H].

The effects of finite propogation of disturbances
using coupled wave equations of heat and mass transfer
have been reported [9H].

CHANGE OF PHASE

Boiling

Nucleate boiling. A discussion of the applicability of
the bubble flux density concept was discussed [35]]
then extended for use with methanol. A low nucleation
site density model for surface quenching was extended
to high densities [40J] where the areas of influence of
nucleation sites overlap. The enhancement of eddy
transport inshearing two-phase flows by microconven-
tion was demonstrated [80J]. An analytical and
experimental investigation of bubble waiting time
showed that bubble nucleation in subcooled flows
contributes significantly to convection [5J]. Vapor
bubble growth on a heated wall in a stagnant liquid was
analyzed and a simple relationship between time and
the diameter of a bubble at departure was found [22J].
Stroboscopic photography was used to determine
instantaneous size and velocity of evaporating bubbles
in sprays [45J]. Bubble growth rate data taken in
various mixtures of liquids documented the effect of
liquid mixture makeup [86J]. Further support of the
Forester-Zuber growth rate law was found and a
universal correlation was presented for developed
boiling heat transfer on surfaces of known micro-
geometry and on commercial heating surfaces [77J]. A
photographic process was employed to create a regular
array of pits in a copper surface [51J]; data {from this
surface showed enhancement of heat transfer and a
significant effect on the boiling curve and burnout. The
use of a gold film deposited on a glass substrate as a
surface heater and resistance thermometer was
demonstrated [59]7. Since the film was transparent,
photographs could be taken from beneath. The
evolution of enhanced surfaces was discussed [94]].

Forced convection boiling. A modification of an
existing nucleate boiling correlation was proposed
[81J]. The modification was the replacement of the
bubble nucleation and growth term with one derived
from natural convection nucleate boiling data. A
previously formulated boiling heat transfer correlation
for compact plate-fin heat exchangers was extended to
include the effect of velocity [17J].

The results of a transition boiling study were
summarized [63J]. Effects studied were: fow
conditions; method of analysis; method of test
operation, and equipment arrangement and
construction.
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A fully developed and adiabatic two-phase annular
flow model with liquid entrainment was derived for
flow in a pipe [47J]. A theory was presented for two-
phase bubble flow in channels [68J]. An additional
eddy diffusivity component was given for bubble
agitation. The theoretical predictions of profiles of
velocity and temperature as well as skin friction and
heat transfer coefficient were compared to experimental
data [69J].

Heat transfer measurements were made in the post-
dryout region of an air-water dispersed flow [50J]. The
effectiveness of wall-to-drop heat transfer depends
mainly on the wall superheat for surface temperatures
below the minimum film boiling temperature. The
thermalentrance length exceeds that of single phase gas
flow and decreases with increasing wall temperature.
Turbulent droplet flow heat transfer was analyzed for
the thermal entrance region of a tube [65]].

A model of the flow boiling crisis in high vapor
quality annular flow was presented with some
experimental results [ 73]]. Dryout measurements were
made for the flow of boiling water in an annulus with
various profiles of axial heat flux [11J]; for BWR
geometries, total dryout power was only weakly
dependent upon the profile shape. In [36]], previously
published generalized CHF correlations were used to
predict the well known relation between CHF and exit
quality. A graphical method was used to present CHF
data; three regimes were identified [37J]. These
regimes were further discussed with respect to the fiow
patterns [38]]. A correlation of existing experimental
data for CHF in uniformly heated rectangular channels
was formulated [393] and new experimental results
with small heated length to diameter ratios were
presented. CHF and liquid film flow rates were
measured with upward flow in a uniformly heated tube
[90J]. The exit film flow rate was found to be near zero
at CHF conditions when the quality exceeded 50%.
CHF in a helically-coiled tube was experimentally
investigated [33J]; subcooled CHF decreases in the
coil whereas high quality CHF is increased by coiling
the tube. CHF experiments were performed in a
LMFRBR steam generator test facility [26J] ; empirical
correlations were presented. Dryout and pressure drop
data were taken for helically coiled steam generator
tubes [92J]. A criterion was developed to determine
whether gravity influences burnout in upward flow or
in downward flow over horizontal cylinders {29]] ; low
speed downflow runs indicated a buoyancy burnout
mechanism that replaced the more common hydro-
dynamic burnout. A theory was given for the thermal-
hydraulic phenomena, including dryout, during
recovery of heated flow channels [84]]. The theory
predicted the equivalent collapsed liquid level and the
two-phase mixture level in a channel during certain
nuclear reactor transients. A best-estimate prediction
of transient CHF during reactor blowdown was
presented [46]]. Several correlations based on local
conditions were tested against recent blowdown heat
transfer data.
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A discussion of the spring model in superheated
sodium boiling was given [27J] and density wave
oscillations in once-through sodium-heated steam
generator tubes were experimentally studied [91J].

Natural convection boiling. Transient boiling with
various heater surfaces (wires and patches) and step
power inputs was experimentally investigated [56]];
the onset of boiling was found to be time dependent.
The variation of the local heat transfer coefficient
around the circumference of a horizontal tube was
found experimentally [12J]. Reynolds analogy was
applied to film boiling on a horizontal plate and a heat
transfer coefficient correlation was derived [421].

Experimental and analytical studies of film boiling
around small spheres [78]] were reported with a
discussion of the relationship to vapor explosions. For
subcooled liquid boiling, the ratio, not the difference,
between the subcooled and saturated liquid film boiling
Nusselt numbers is significant. Transient heat transfer
from a horizontal cylinder initially in film boiling but
responding to the passage of a shock wave was
measured [31J] and analyzed [32J]. The transient heat
transfer rate was as much as 20 times the steady state
rate. The vapor mass is a key variable determining
whether collapse is achieved. Implications for vapor
explosions with liquid in contact with molten nuclear
fuels were discussed.

An analysis was made of steady natural convection
film boiling on a vertical plate in a porous medium
[19]7;ata given Rayleigh number, the Nusselt number
was found to be uniquely dependent upon the vapor
film thickness. Contamination of nucleation sites by
corrosion products was investigated [34J]. The effect
of plasma-deposited polymers on nucleate boiling
behavior of a copper surface was experimentally
determined [30J]. A thin coating of TFE enhanced
nucleate boiling while a thicker coating reduced it. A
surface energy effect was postulated to explain this
behavior.

Experimental results were presented for boiling of
binary mixtures of varying compositions [23J] ; bubble
growth and shape change characteristics were as
observed with pure liquids. The effects of heat flux, void
ratio, and diameter ratio on boiling heat transfer in a
concentric-tube open thermosyphon were examined
[7531; heat flux could be found as the summation of
single phase free convection and boiling correlation
values. Boiling of water drops superheated in a
nonvolatile liquid [8J] is initiated at the water
hydrocarbon interface by either growth of a single
bubble or by streams of bubbles. The superposition ofa
magnetic field on boiling of mercury or mercury plus a
wetting agent was shown toresultinsignificantincrease
in the heat transfer coefficient [93J]. Increased field
strength also lowered incipient boiling heat flux and
encouraged transition to film boiling. Wave pro-
pagation of film or nucleate boiling over a heated
surface was investigated analytically and experiment-
ally {9831



1794

A new criterion of dryout was formulated for upward
mist flow in tubes [49J]. An experimental investigation
of CHF in horizontal channels with circumferentially
varying heating [44J] showed that minimum CHF
values with nonuniform heating were somewhat higher
than those for uniformly heated channels.
Measurements were made of CHF and rate of droplet
entrainment when boiling a falling liquid film on the
outside surface of a vertical tube [89J]; CHF was
categorized according to film flow rate. CHF was
measured in a countercurrent liquid vapor flow in a
closed-end vertical tube [55J]. The length-to-diameter
ratio of the test section was shown to influence the
flooding CHF.

Condensation

Film condensation. A mixing length mode! was used
to calculate velocity profiles and pressure drop in
turbulent downward-directed flow with film evapor-
ation or condensation [ S4J]. An experimental study of
steam condensation on subcooled liquid film within an
inclined duct [74J] showed that local heat transfer
coefficients may be related to the turbulence intensity in
the film. Verification was presented of multicomponent
mass transfer models for condensation inside vertical
tubes [95J]. Calculations for optimizing surface design
were made of condensation rates on fluted surfaces
[2J]. A numerical solution was found to wavy laminar
film-wise condensation on vertical walls [79]]. Steady
film condensation outside a wedge or coneembedded in
a porous medium filled with dry saturated vapor was
analyzed [18J]; a closed-form solution was found for
Nusselt number as a function of Rayleigh number and
film thickness. Methods were presented [71J] for
determining suitable measures to prevent disturbances
in heat exchangers due to periodic accumulation of
condensate on tubes. Laminar film condensation of
binary vapor mixtures was analyzed revealing some
interface characteristics and showing the effect of
linearly varying the wall temperature [72]].

Condensation rate and vapor and condenser surface
temperature measurements were made during film
condensation of mercury on vertical, nickel-plated,
copper surfaces [ 58J]. Experimental heat transfer and
hydrodynamic results in film condensation on vertical
surfaces [25J] indicated the effects of the strength,
frequency and uniformity of an electric field.

Gold surfaces were experimentally shown to
promote dropwise condensation of steam [96]].

Free condensation. The validity of the basic
assumptions of dropwise condensation was assessed
[67]). Results of an experimental study of surface
characteristic and material property eflfects on
dropwise condensation were presented [1J] and, in a
technical note [851], a discussion was presented on the
effect of Knudson number on dropwise condensation.
An analysis was made for the stagnation region of a
spherical water drop moving in an environment
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composed of particulates and a saturated mixture of the
following gases: condensable steam, noncondensable
and nonabsorbable air, noncondensable but ab-
sorbable elemental iodine, and chemically reactive
methyl iodide [20]1]. Numerical analyses were made of
(1) condensation of multicomponent vapor in the
presence of inert components [9J] and (2} laminar
condensation near the stagnation point of a droplet
moving in a saturated mixture of steam, air and a
noncondensable but absorbable gas [21J].

Vaporization

Vaporization of films. The system mean void fraction
model was applied to problems involving incomplete
vaporization [55J] and an analysis was made of the
phenomenon of hydraulically-controlled dryout in a
vertical channel [83J]. An analysis of laminar mist flow
along a flat plate [87J] showed that the high heat flux
resulted from a superposition of film evaporation and
convective heat transfer. Data was taken on
evaporating [ilms on the inner wall of horizontal tubes
[41]7; spiral grooves can double the evaporation heat
transfer coefficient due to the capillary phenomenon.
Local heat transfer coefficients were determined for
evaporation of trickle films on vertical surfaces [70J 1. A
model of particle bed dryout based on the phenomenon
of flooding [60J] predicted a dryout heat flux that
depends on the square root of the particle diameter.
Enhancement of evaporation initiated by the
differential vapor recoil mechanism was experimentally
studied [62J].

Experiments on refilling and rewetting hot
horizontal tubes [14)] indicated that gravitational
effects are important and lead to flow stratification; an
analysis followed [15J]. A similar experiment [16J]
showed a liquid tongue running along and rewetting
the bottom surface ; the phenomenon was thought to be
hydrodynamically controlled. Quenching data were
presented for reflooding of zircaloy and stainless steel
clad rod bundles with cold water [64]] showing that
zircaloy quenches faster under similar conditions.

Free wvaporization. A numerical solution was
presented [66]] for evaporation in a spray evaporator;
a reflooding index is related exponentially to the
droplet diameter and wetting ratio. Turbulent droplet
flow heat transfer under post-dryout conditions was
numerically analyzed [97J].; the droplets were
distributed heat sinks and the eddy diffusivity function
of Deissler was used for the vapor phase. An analytical
study of both diffusion-controlled and radiation-
controlled evaporation of a spray [6J] demonstrated
that evaporation characteristics were correlated best
by the droplet initial Sauter number. An analysis was
presented for water evaporatingin high temperature air
[281]. Experiments with liquid droplets evaporating
into a flow of gas capable of condensing [43J] showed
some surface condensation of the ambient gas and
indicated that the process was limited by heat and mass
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transfer. An augmentation of evaporative cooling of
liquid drops falling freely was attempted by coating the
drops with an immiscible, volatile liquid [53J]; the
dependence on initial drop temperature, volume ratio
of volatile liquid to the drop liquid (water} and the air
temperature and humidity was investigated. An
analysis was made of unsteady evaporation and
condensation heat and mass transfer in a single drop
[64]] and an experiment was made of condensation or
evaporation of a volatile liquid drop or condensible gas
bubble in a liquid medium [82J]. An approximate 3-
dim. numerical model for predicting characteristics of
spray units was presented [61J] that predicted local
distributions of dry-bulb temperature, absolute
humidity and air streamlines within the flow.

An analysis of bubble growth during depressuriz-
ation of liquid was made [13J] and a method for
correlating the extent that the pressure undershoots the
saturation pressure was given [3J]. The limit of
homogeneous nucleation under these conditions was
shown to lie close to the liquid spinodal line [487]. The
limits of superheat of some binary mixtures were
measured at high pressure [7J] and a model was
devised ; the results apply to the burning of droplets of
fuel blends which are mixtures of volatile and
nonvolatile liquids. An analysis of thermal, mass and
dynamicinteraction between a vapor—gas bubble and a
liquid during a rapid pressure change or within a sound
field was presented [57]].

Other

Experiments were made for mass transfer to air
bubbles adhering to the inside wall of a tube carrying
supersaturated liquid [4J]. The effects of mass,
momentum and thermal variations on the dynamics of
inert gas bubbles moving in a channel flow of a liquid
and dissolved gas solution were analyzed [52]];
differing axial distributions of pressure and tempera-
ture were presumed. A method was suggested [88J] for
determining mass transfer coefficients at liquid-liquid
interfaces. An analysis was made of the thermocapillary
migration of a fluid droplet inside a drop assuming
space laboratory environment [76]].

RADIATION

Radiation in participating media

Radiative transport in emitting, absorbing, and
scattering media is of continuing interest. The basic
theory for radiation transfer in an arbitrary medium
has been derived using the general form of the Bethe-
Salpeter equation [4K]. Time-dependent radiative
transfer is studied in a semi-infinite medium with a
reflecting boundary [8K]. The accuracy of an
approximate method for calculating the intensity and
fluxes of radiation from an inhomogeneous two-phase
layer with emitting and reflecting boundaries has been
ascertained for a wide range of initial parameters [ 1K].
Studies are reported of infrared (10 um) induced
evaporation of large water droplets [15K].
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Considering gas enclosures the geometric-mean
transmittance and total absorptance between two finite
areas can be reduced to single numerical integrations,
thus eliminating much of the mathematical complexity
[18K]. A new type of spectrometer has been developed
for performing rocket measurements of the near
infrared absorption spectrum of the upper atmosphere
[11K]. It is shown that all gaseous admixtures in a
radiation-absorbing non-equilibrium gas may be
induced to drift along the light beam. This effect may be
useful for separating sulphur isotopes [9K].

Results of an analysis of radiative—convective heat
transfer of an axisymmetric blunt body in hypersonic
air flow are presented for ablating graphite surfaces
[13K]. An analysis of radiative transfer in a plane slab
takes an azimuthal dependence of the radiation field
into account, asituation which is of significant practical
importance [16K].

Simple solutions for the effective thermal conduc-
tivity for combined radiation and free convection in an
optically thick heated fluid layer compare favorably
with numerical solutions of the governing encrgy
equation incorporating both turbulent heat transport
and thermal radiation [5K]. Considering turbulent
flow of a multiphase medium with absorbing, emitting
and anisotropically scattering particulates bounded by
a heated or cooled constant-temperature wall,
numerical results are presented for a wide range of the
governing parameters [3K].

A study of the radiative heat flux in absorbing,
emitting and linear anisotropically scattering cylin-
drical media shows that in engineering applications
approximate methods may be used to accurately model
the radiative contribution to overall heat transfer rates
[2K]. Analytical studies of multidimensional, radiative
transfer with anisotropic scattering are in satisfactory
agreement with corresponding experiments [10K].

A new gray-gas approximation for carbon dioxide
standard emissivity provides simplicity and reasonable
accuracy (errors < 6%) for temperatures between 800
and 1800 K and for 1 € pL < 103 ¢m atm [6K]. An
experimental investigation of thermal radiation of
certain gaseous hydrocarbons reveals that the
emissivity is strongly dependent on the number of
carbon atoms in a molecule [17K].

The P—1 approximation has been generalized for
non-gray problems offering the advantage that all
solutions can be expressed in terms of the spectral
absorption coefficient. It is shown that this technique is
superior for gases [ 19K]. The radial heat flux and its
divergence are determined both exactly and ap-
proximately for homogeneous suspensions of small
particles in anisothermal cylindrical medium. A closed-
form approximate solution for the surface heat flux is in
excellent agreement with exact results [7K].

Infrared measurements of the stratospheric com-
position indicate that measured NO and NO,
concentrations are in disagreement with absolute
values predicted by the Oxford 2-dim. diurnal model,
but in close agreement with their day-time changes
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[14K]. By using a new non-steady measuring method,
the different radiation fluxes, as well as the net radiation
fluxes, can be established for rivers [12K].

Surface radiation

The calculation of shape factors for radiative transfer
has been extended to rectangular, plane surfaces of
arbitrary position and size. A computer facilitates a fast
evaluation of the derived equations [2L]. Effective
emissivities of conical cavities having diffuse surfaces
are computed by an iterative procedure and effective
reflectances are determined with a series technique
which involves powers of the reflectance of the wall
material [3L].

A perturbation analysis for periodic heat transfer
from radiating fins shows that within the range of
parameters of this study, the net effect is to decrease the
mean temperature and increase the mean heat transfer
rate[1L]. A technique for measuring reflectance factors
under diurnal and intermittent cloud insolation
conditions using hand-held radiometers has been
developed. The results of such measurements indicate
that this technique may be useful for achieving uniform
reflectance factors for remote sensing studies [4L].

MHD

There is a continuing interest in MHD and its
applications. In particular, MHD generators are
considered.

Because of the high temperatures and the large sizes
of large scale MHD generators, radiative heat transfer
in the combustion gases becomes a significant energy
transport mechanism [8M]. Studies of heat and mass
transferin MHIDD channelsindicate that heat transfer by
gas radiation almost equals that by convection for
smooth walls, and amounts to 3/4 as much as the
convective heat transfer for rough walls [3M]. A
combined convection—gas radiation, two-zone flow
model is formulated for studying heat transfer
characteristics of MHD radiant boilers [4M]. Studies
of combined conduction, convection, gas radiation and
particle radiation in a reference MHD diffuser {1700
MW thermal) show that heat transfer by convection
amounts to 25 MW and radiative heat transfer from 44
to 79 MW depending on the rate of ash carryover into
the channel [2M].

The results of an analysis of a fully developed forced
and free convective MHD flow between two electrically
conducting vertical plates indicate that an increase of
the thermal conductance ratio of the two plates leads to
both an increase of the velocity and of the temperature
[7M]. For establishing heat transfer scaling laws for
MHD channels and diffusers, a quasi-3-dim. model has
been developed for determining convective and
radiative heat transfer characteristics [IM].

Open-cycle MHD generator channel development is
discussed with emphasis on critical design criteria and
limitations on channel operating parameters [6M].
The development of steam generator components for
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open-cycle MHD power plants requires, for example,
the design of radiant furnaces [5M]. Results of
performance studies are reported for a multiphase
boiling MHD generator [9IM].

NUMERICAL METHODS

Papers reporting the use of numerical methods for
solving specific physical problems are listed in the
appropriate category pertaining to the problem.
Occasionally, some numerical innovations are em-
bedded in such papers. The literature cited in this
section is primarily aimed at the development of a
numerical method rather than its application.

The inverse heat conduction problem has been
treated [ 1IN, 17N7]. A calculation scheme for transient
phase change around a cylinder is given [I8N].
Variable time step methods for the Stefan problem have
been examined [ 10N]. Ref. [4N] describes an efficient
technique for calculating two-dimensional tempera-
ture distributions. Turbulent temperature fluctuations
in liquid metals have been numerically simulated [§N1].
A Monte Carlo technique has been adapted for the
determination of radiation interception [16N]. An
implicit Eulerian method has been used for steam
generator analysis [SN]. Transient conjugate problems
have been treated by a quasi-steady approach [15N].
Singular perturbation techniques using finite elements
have been developed for 1-dim. [6N] and 2-dim. [7N]
convection—diffusion problems. Ref. {12N] describes a
generalized finite-difference method for heat transfer
problems inirregular geometries. A general calculation
procedure for 2-dim. fluid flow and heat transfer has
been described [11N]. The finite analytic method has
been used for the heat transfer in a cavity [3N].

A method has been developed for the solution of
nonlinear boundary-layer equations [14N]. The
concept of group transformations has been applied to
the nonlinear heat diffusion equation [9N]. The
technique of computer-extended series is developed in
the context of natural convection [13N]. A variational
approach has been employed in the prediction of
laminar flow with dissipation [ 12N].

HEAT TRANSFER APPLICATIONS

Heat exchangers and heat pipes

A new method for the prediction of heat transfer
coefficients is presented [1Q] in gas flow normal to
banks of finned and smooth tubes with triangular pitch.
A new design [ 14Q] of a shell and tube heat exchanger
resulted in a slight increase in heat transfer coefficients
with a significant reduction in pressure loss. Tests on
pilot plants [6Q] revealed that measured heat transfer
coefficients and pressure drops for air coolers do not
satisfy available correlations for asmall number of rows
orforced draft. Experiments [2Q] studied the influence
of fouling biofilms on heat transfer under controlled
conditions. Results compare well with those of a simple
mathematical model.
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Several papers are concerned with the performance
evaluation criteria of heat exchangers. Previous work
by Bergles and Webb was extended to establish such
criteria for single phase flow in tubes including the effect
ofshell side enhancement and fouling [ 19Q]. It was also
investigated [ 13Q] under what conditions such criteria
remain unchanged when the two fluid streams are
switched. Some fundamental relations were developed
[12Q)] to describe the performance of a tubular heat
exchanger based on NTU, heat capacity ratio, and a
temperature efficiency parameter. A method of
stochasticapproximation [ 16Q]toidentify parameters
of parallel flow heat exchangers compares favorably
with unsteady experimental results.

A study [9Q] concludes that tiny fins result in the
best surface geometry for vertical condenser tubes with
outside condensing surfaces. The design of multizone
condensers for desuperheating, condensing, and
subcooling is discussed [11Q]. A rotary dry cooling
tower was developed [17Q7] with disks rotating
between a hot water bath and a forced air stream. A
layer of oil on top of the water eliminates evaporation.
An analysis was verified by experiments. The prediction
of boiling heat transfer is discussed [ 5Q] for a compact
plate-fin heat exchanger with frequent interruptions. In
this extension of a previous study the assumption is
made that local heat transfer coefficients are related to
local metal-to-liquid temperature difference.

A parametric study [8Q] of a particulate direct
contact heat exchanger shows that heat exchange
improves as the particle diameter decreases, the heat
capacity ratio, the flow rate ratio, and the approach
temperature increase for laminar bulk flow and particle
Reynolds numbers from 20 to 500. Experiments on heat
transfer in tubeless evaporators [15Q] are compared
with a theory assuming that uniformly distributed
drops heat up and evaporate.

Three papers deal with the thermal performance of
regenerators. Addition of 15%, steam to combustion air
doubled the heat transfer coefficients during the cooling
period and increases them by 15% during the heating
period [3Q]. It is demonstrated [7Q] how latitudinal
conduction can be incorporated in lumped heat
transfer coefficients for thermal regenerators. A
theoretical model and experiments of heat and mass
transfer in rotary regenerators with condensation,
evaporation, and convection are described [18Q7] and
results obtained with an experimental facility are
presented.

Two papers are concerned with heat pipes. From an
experimental study of the transfer mechanism in the
evaporator [ 10Q] it is concluded that the heat transfer
mechanism in a wick of screens is identical to that in a
sintered powder wick. Heat pipes filled with sodium
reduced the wall temperature at the stagnation line of a
space shuttle wing from 1500 to 900 K [4Q)].

General
Experiments [13S] on water vapor contribution to
the erosion of steel in high temperature flows are
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reported and interpreted by a surface reaction model. A
theory is proposed [9S] to describe the effect of nozzle
erosion on heat transfer in a ladle of molten steel during
pouring. The nozzle temperature is calculated and
compared with plant observation. Experiments
established [14S] that the lowest temperature on a
surface cooled by a liquid spray is a linear function of
the spray mass flux. The vertical temperature
distributionis calculated [2S] in astoragetank fed at its
top with warm fluid in laminar flow.

Different designs of air cooled gas turbine blades
have been discussed [10S]. Five computer programs
used to calculate heat transfer rates to gas turbine
blades have been compared with experiments [8S] at
the University of Oxford free piston wind tunnel. The
programs differ by their turbulence models. All
calculated results show the right trend but quantitat-
ively they differ considerably. An equation Nu = ¢Re"
is developed [16S] from literature data describing
average heat transfer coefficients to turbine blades. An
analysis [6S] simulates the disturbance of a
combustion chamber with film cooling by air jets with a
model replacing the jets by cylinders normal to the
chamber wall. The results are compared with
experiments. Model tests determining heat transfer in
the casings of turbines with a loop system of steam flow
have been performed [22S] and the results are
recommended for use in the design of similar casings.

An experimental and analytical study [7S] points to
the conclusion that instantaneous heat transfer in an
engine exhaust port is primarily caused by jet induced
fluid motion.

The process in a liquid metal fast breeder reactor
under natural circulation is simulated dynamically by a
computer code [4S] using specifications for the Clinch
River Breeder Reactor Plant. The results of
experiments are reported [5S] for a circulating
fluidized bed with coal combustion. A mathematical
model of heat transfer from a large enclosed flame in a
rotary kiln [15S] predicts the gas and refractory
temperature profiles. It is based on the Hottel-Sarofim
method and tested against experimental results.

Experiments on the cooling of high pressure rocket
thrust chambers with liquid oxygen [20S] verified a
supercritical heat transfer correlation developed from
heated tube experiments. Design and off-design
performance calculations of space radiators with liquid
coolant circulation and radiating to the surroundings
have been performed [12S] with and without heat
pipes. An analysis shows [3S] that conventional
methods do not describe adequately the unsteady
convective heat transfer in a gun barrel.

A three-parameter equation is developed [18S] with
the parameters Re, Pr, and K = ¢U/L, using the
improved equation
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for the shear. Velocity and temperature boundary
layers are calculated with this equation. Frictionally
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generated heat in a polymer may lead to a heat
explosion [ 195] when this heat is not balanced by heat
transfer to the surrounding. A model is proposed [ 11S]
for the analysis of heat and mass transfer in hydroscopic
capillary extruded products using equations for the
liquid and vapor fluxes depending on temperature and
equilibrium moisture content gradients.

An analysis [1S] of heat transfer during cooling of
spherical food products establishes the parameter
range for best effectiveness when the air passing over the
product is continually wetted by a chilled water spray.
The temperature separation in a Hartmann-Sprenger
tube can be improved [17S] by coupling it to a
resonator and by use of a nozzle with a thinrod along its
axis. The cost of large scale heat transfer research and
testing makes it necessary to carefully optimize the test
program [21S].

Solar energy

Topics of major interest among the heat-transfer
related solar energy publications include: solar
radiation, flat-plate and concentrating collectors,
thermal storage and system performance, both passive
and active. The standard technique of analyzing solar
photometer data to determine atmospheric optical
depth and the spectral solar constant inadvertently
weight the data unequally [10T]. Seasonal variations
of atmospheric clearness numbers for use in clear day
solar radiation modelling are proposed [9T].

Two analyses of a non-linear flat-plate collector are
presented in which the overall loss coefficient is
assumed to be a linear function of the temperature
difference between the fluid in the collector and the
environment [ 5T, 7T]. A brief analysis re-examines the
original justification for linear and second-order
efficiency characteristics [6T]. Simple stagnation-
condition measurements for solar collectors can
provide a direct measurement of the temperature
dependence of the heat loss coefficient [8T]. Based on
available correlations, relations were found for the
local maxima’s and minima’s in heat transfer as the gap
spacing is varied in flat-plate solar collectors [15T]. A
simplified equation was proposed for evaluating the
top loss coefficient for a flat-plate solar collector [2T].
New expressions for the heat transfer factor Fy based
on inlet, outlet and mean fluid temperatures were
derived for use with the Hottel-Whillier collector
model by the use of restrictive heat transfer
assumptions [14T]. The thermal boundary layer
problems associated with flat-plate solar collectors
have been analyzed using fourth degree polynomials
[17T]. A fluorocarbon loaded solar collector system
was found to have elficiencies as high as 839, for a
collector-to-ambient temperature difference of ap-
proximately 10°C [23T]. Experimental thermal
efficiencies for a distributed flow, subatmospheric
pressure, flat-plate solar collector were reported for a
wide range of environmental and operational
conditions [24T]. New experimental results make it
possible to draw more general conclusions about the
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effect of tilt and end clearance on the performance of
honeycomb in suppressing convection in flat-plate
collectors [30T]. The number of slabs and their
thicknesses are both important parameters in the
performance of thermal trap collectors [22T]. The
energy absorbed by a fluid confined within a circular-
cylindrical cover was calculated [26T].

The intermediate range of concentration ratios
which can be achieved with compound parabolic
concentrators(CPC)withoutdiurnal tracking provides
both economic and thermal advantages for solar
collector design even when used with non-evacuated
absorbers [21T]. Mathematical formulations were
developed to study thermal processes in a CPC
collector fitted with a concentric, evacuated double
pipe to serve as a heat absorber [11T].

Stratification effects in a rock bed storage unit were
analyzed in terms of a stratification coefficients which is
shown to be a system constant that depends only on
three dimensionless system parameters [20T].
Significant reductions in the collector area require-
ments for a particular system performance can be
realized by employing seasonal sensible storage [3T].
The characteristic variation of the rate of heat transfer
to and from a latent heat thermal energy storage
capsule was investigated analytically and experiment-
ally [12T]. The addition of phase change thermal
storage for buffering will substantially improve the
performance of parabolic dish solar thermal power
plants [16T].

A design method for direct gain passive solar heating
systems is given which is more general than the “Solar
Load Ratio” method [ 18T]. Theeffect of air flow ratein
collector-storage walls was analyzed [29T]. A heat
transfer model of a parallelepiped tank full of water and
covered with a translucent insulation of diffuse material
tosolar energy, was developed considering the multiple
absorptions and reflections to evaluate the heat gain or
loss by the water [27T]. A passive energy collection and
storage system for greenhouses, based on the collection
of energy from the greenhouse atmosphere and storage
in the ground, is investigated [19T].

A simple periodic analysis of a basin-type solar still
(both single as well as double) quite satisfactorily
explains the thermal performance [25T]. Precipitation
in a ‘saturated’ solar pond can increase the reflectance
of the bottom of the pond and this can reduce the width
of the nonconvective zone and, thus, seriously degrade
the performance of the pond [13T]. A new technique
was devised to make quantitative estimates of the value
of the three major components of a solar-driven
chemical heat pump [28T]. A second law efficiency
analysis for solar water heaters was presented [1T].
Mounting heat-sink fins in a suitable funnel can
contribute substantially to their effectiveness in cooling
solar energy converters [4T].

PLASMA HEAT TRANSFER

There is a continuing, strong interest in plasma heat
transfer. A 2-dim. analysis of free convection in
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horizontal, high pressure arcs consisting primarily of
Hg vapor confined in quartz tubes, shows that the
vertical location of the hot core is in good agreement
with experimental findings [12U]. Similarity relations
derived for electric arcs in forced axial flow indicate that
a turbulent flow model is more consistent with
experiments than a laminar flow model [ 16U7]. Results
of a two-temperature modeling of the anode
contractionregion of a high intensity argon arcindicate
that the temperature discrepancy between electrons
and heavy particlesis very pronounced in the arcfringes
and the region close to the anode [3U7]. A similar study
oi an arc plasma reactor indicates that enhanced Joule
heating in the constricted arc path raises the electron, as
well as the heavy-particle temperatures resisting the
penetration of the cold gas into the hot arc core [2U].
Calculations of the heating mechanism of cathode
craters in vacuum arcs show that Joule heating is
insufficient to explain the short time scale of their
formation. Therefore, ion impact heating is considered
to be the dominant process [9U]. A sectioned, rotating
cylinder of 10 cm diameter is used for measuring local
heat fluxes and current densities at the anode of a
stabilized, rotationally symmetric atmospheric pres-
sure argon arc for currents from 100 to 500 A. The
results indicate maximum current densities of 340 A
cm ~? and heat fluxes up to 7kW cm ~ 2 for the 500 A arc
[1uU].

The reduction and dephosphorization of molten iron
oxide with hydrogen—argon plasmas shows that the
efficiency of hydrogen utilization for the reduction is
much higher than predicted by equilibrium values
Lelow 3000 K [14U]. Transition metal nitrides and
alloys may be directly synthesized in a DC argon—
nitrogen plasma from powders of the corresponding
metals [17U]. Superconducting compounds such as
cubic a—MoC, _,, etc. which are metastable at room
temperature have been formed by heating and
quenching of the corresponding equilibrium phasesina
plasma jet [11U]. A reactive plasma zone melting
process has been used for the purification of
metallurgical grade silicon [13U]. Investigations of the
heating of submicron particles (metals) in a thermal,
optically thick plasma indicate that kinetic methods are
required for calculating heating of the particles [18U].
A 100k W three-phase plasma furnace has been used for
spheroidization of aluminum silicate particles. A
simple, 1-dim. model for particie heat transfer explains
the maximum processing rates and the detrimental
effect of an inhomogeneous particle size distribution
[7U]. A new sample injection method, incorporated
into the design of a r.f. plasma torch, is capable of
complete evaporation of refractory materials at high
feedingrates withoutinterfering with the stability of the
plasma [21U7.

Transport properties of hydrogen, oxygen, and
argon mixtures are calculated for a temperature range
from 4000 up to 10000 K using the Chapman-
Enskog approach [15U]. Studies of the total
emission coefficient of an air plasma at temperatures
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from 17000 to 20000 K and pressures from 3 to 15
MPa indicate that calculated data in the literature are
2-4 times too high [6U].

Studies of the behavior of cold Langmuir probes
immersed into a moving, compressible, high pressure
plasma (MHD plasma) take the cooling-induced
reduction of the local ion mobility and the distortion of
the hydrodynamic flow pattern close to the probe into
account [4U]. By measuring heat transfer rates from a
rarefied argon plasma to a biased tungsten wire,
accommodation coefficients of argon atoms were found
to be 0.62 and for argon ions a value of 0.48 has been
found [8U]. A new numerical method has been
developed for determining local emission coefficients in
asymmetric plasmas (extension of conventional Abel
inversion) [20U]. Results of laser-induced fluorescence
measurements in high-pressure mercury, mercury—
metal halide, and sodium-mercury arcs indicate that
this method offers interesting possibilities for the
determination of local particle density ratios, local
spectral line shifts (Stark shifts) and transition
probabilities [ 19U].

The heat flux along a uniform magnetic field due toa
temperature gradient is calculated using a Monte-
Carlo solution to the Fokker—Planck equation. The
calculated heat flux makes a smooth transition between
the analytic expressions for the short and long mean-
free-path limits [ 10U]. Small scale features (10-20 pm)
in laser-produced plasmas may be influenced by an
instability associated with the density dependence of
radiative energy losses [SU].
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